-• (CLASS T	ES1	「 •——			S.No.: 015	5KCE_AB	3CD_2203	2025 -
NE MADE EASY									
Leading Institute for IES, GATE & PSUs Delhi Bhopal Hyderabad Jaipur Pune Kolkata									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
ENGINEERING MECHANICS									
CIVIL ENGINEERING									
	Date of Test : 22/03/2025								
AN	SWER KEY	>							
1.	(b)	7.	(b)	13.	(a)	19.	(a)	25.	(c)
2.	(c)	8.	(b)	14.	(b)	20.	(a)	26.	(c)
					(\mathbf{a})	21	(a)	27.	
3.	(b)	9.	(b)	15.	(a)		(-)		(b)
3. 4.		9. 10.		15. 16.		22.		28.	
	(c)		(a)		(b)		(a)		(d)

DETAILED EXPLANATIONS

1. (b)

During inelastic collision only linear momentum is conserved.

2. (c)

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$
$$\omega_0 = 0$$
$$\theta = \frac{1}{2} \times 2 \times 10^2 = 100 \text{ rad}$$
$$\therefore \text{ Number of revolutions } = \frac{100}{2\pi} = 15.92$$

3. (b)

$e = \frac{\text{Velocity of separation}}{\text{Velocity of approach}}$

For perfectly elastic body, e = 1 and no dissipation of energy occurs.

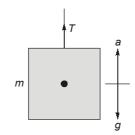
Kinetic energy,
$$KE = \frac{1}{2}I\omega^2$$

$$I = \frac{mr^2}{2} = \frac{20 \times (0.2)^2}{2} = 0.4 \text{ kgm}^2$$

$$\omega = \frac{2\pi N}{60} = \frac{2 \times \pi \times 600}{60} = 62.83 \text{ rad/sec}$$

$$KE = \frac{1}{2} \times 0.4 \times (62.83)^2 \simeq 790 \text{ Joules}$$

5. (d)



$$T = m(a + g) = 400(3 + 10) = 5200 \text{ N}$$

6. (a)

Given: Velocity of first particle, $u_1 = 10 \text{ m/s}$ Angle of projection for first particle, $\alpha_1 = 60^{\circ}$ Angle of projection for second particle, $\alpha_2 = 30^{\circ}$ Velocity of second particle, $u_2 = ?$ Given, Time of flight is same.

$$t_1 = t_2$$

$$\frac{2u_1 \sin\alpha_1}{g} = \left(\frac{2u_2 \sin\alpha_2}{g}\right)$$

$$u_2 = \frac{10 \times \sin 60^\circ}{(\sin 30^\circ)} = \frac{10 \times \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 10 \times \sqrt{3}$$

$$u_2 = 17.32 \text{ m/s}$$

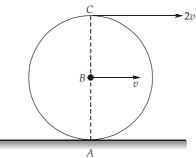
7. (b)

Given: Velocity,
$$v = 54$$
 kmph = $(54) \times \frac{5}{18} = 15$ m/s

Diameter, d = 1 mRadius, r = 0.5 m

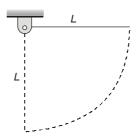
(i) Velocity of the top of the wheel relative to the person sitting in the carriage:

We know that the velocity of the top of the wheel (C) = 2v = 2 × 15 = 30 m/s



Velocity of the person sitting in the carriage, v = 15 m/s Velocity of the top of the wheel relative to the person sitting in the carriage = 30 - 15 = 15 m/s

8. (b)



Applying conservation of energy,

$$mgL = \frac{mgL}{2} + \frac{1}{2}I\omega^2$$

 $\Rightarrow I\omega^2 = mgL$

$$\Rightarrow \qquad \frac{mL^2}{3}\omega^2 = mgL \quad [\text{The moment of inertia about the end of the rod is } \frac{mL^2}{3}]$$

$$\therefore \qquad \qquad \omega = \sqrt{\frac{3g}{L}}$$

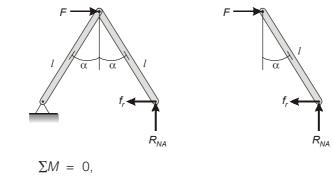
Leading Institute for IEB, GATE & PSUs

9.	(b)		
		Work done, $dW = F \cdot dx = (10 + 0.5 \ln x)dx$	
	Thus,	$\int_{0}^{W} dW = \int_{2}^{4} (10 + 0.5 \ln x) dx$	
		$W = 10(4-2) + 0.5 \int_{2}^{4} \ln x dx$	
		$W = 20 + 0.5 (x \ln x - x)_{2}^{4}$ $W = 20 + 0.5 (4 \ln 4 - 4 - 2 \ln 2 + 2)$	
		$W = 21.079 \mathrm{J}$	
10.	(a)		
	Given:	$\vec{F} = 10\hat{i} + 5\hat{j} + \hat{k}$ (N)	
		$x = \sqrt{106} \mathrm{m}$	
	Now,	$\vec{A} \times \vec{B} = (3\hat{i} + 4\hat{j}) \times (3\hat{j} + \hat{k}) = 4\hat{i} - 3\hat{j} + 9\hat{k}$	
	Now,	$W = \left[(10\hat{i} + 5\hat{j} + \hat{k}) \times \sqrt{106} \right] \cdot \frac{(4\hat{i} - 3\hat{j} + \hat{k})}{\sqrt{4^2 + 3^2}}$	$\frac{9\hat{k}}{+9^2}$
	or	W = 40 - 15 + 9	
	··	$W = 34 \mathrm{Nm}$	x
11.	(c)		
	We have	$ \begin{array}{l} x_c = a \sin \theta \\ \delta x_c = a \cos \theta \delta \theta \end{array} $	
		$ \begin{array}{l} x_B = 2a \sin \theta \\ \delta x_B = 2a \cos \theta \delta \theta \end{array} $	A
			P

Virtual work: We note that *P* tends to increase y_A and *Q* at *B* tends to increase x_B , while *Q* at *C* tends to decrease x_c . From principle of virtual work, work done by external forces is equal to change in internal energy of the system.

12. (a)

Note that the condition of impending slip does not necessarily apply. The moments about the left pin support must be zero.



$$\Rightarrow -Fl \cos \alpha + 2R_{NA} l \sin \alpha = 0$$
$$\Rightarrow \qquad R_{NA} = \frac{F}{2 \tan \alpha}$$

...(i)

Isolate the right bar and take moments about the upper pin joint:

$$\sum M = 0,$$

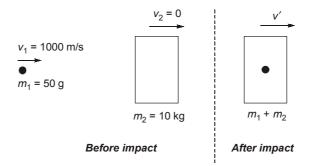
$$\Rightarrow R_{NA} l \sin \alpha - f_r l \cos \alpha = 0$$

$$\Rightarrow f_r = R_{NA} \tan \alpha$$

Substituting R_{NA} from equation (i), we get

$$f_r = R_{NA} \tan \alpha = \frac{F \tan \alpha}{2 \tan \alpha} = \frac{F}{2}$$

13. (a)



Applying the law of conservation of linear momentum,

Initial momentum = Final momentum

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) v'$$

 \Rightarrow

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$= \frac{50 \times 1000 + 0}{10000 + 50}$$

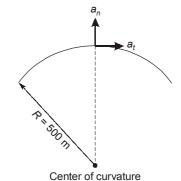
Change in kinetic energy,

$$\Delta KE = \frac{1}{2} \times 0.05 \times 1000^2 - \frac{1}{2} \times 10.05 \times 4.98^2$$

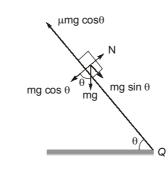
= 24875.38 Joules \approx 24.9 kJ

14. (b)

Speed after 20 sec = $\frac{72}{3.6} = 20 \text{ m/s}$ Initial speed = 0 m/s \therefore Tangential acceleration, $a_t = \frac{20 - 0}{20} = 1 \text{ m/s}^2$ Now speed after 10 sec from start = 10 × 1 = 10 m/s Normal acceleration, $a_n = \frac{V^2}{R}$ $= \frac{10^2}{500} = 0.2 \text{ m/s}^2$ \therefore Required ratio, $\frac{a_t}{a_n} = \frac{1}{0.2} = 5$



15. (a)



From Newton's second law

	$mg\sin\theta - \mu mg\cos\theta$	=	ma
<i>.</i> .	а	=	$g(\sin \theta - \mu \cos \theta)$
\Rightarrow	а	=	$g\cos\theta$ (tan $\theta - \mu$)
Now,	S	=	$ut + \frac{1}{2}at^2$
\Rightarrow	S	=	$0 + \frac{1}{2}g\cos\theta(\tan\theta - \mu) \cdot t^2$
<i>:</i>	t	=	$\sqrt{\frac{2s}{g\cos\theta}(\tan\theta-\mu)}$
(1-)			

16. (b)

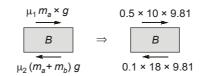
Free body diagram of A:

$$A \rightarrow F \Rightarrow A \rightarrow 100 \text{ N}$$

$$\mu_1 m_a g \qquad 0.5 \times 10 \times 9.81$$

Writing equation of motion for A.

 $100 - 0.5 \times 10 \times 9.81 = 10a$ $\Rightarrow \qquad a = 5.095 \text{ m/s}^2$ Free body diagram of *B*:



Writing equation of motion for B.

$$\begin{array}{rll} 49.05 - 17.658 &= 8 \ a \\ \Rightarrow & a &= 3.924 \ m/s^2 \\ \text{After 0.1s,} & V_A &= U_a + a_a t. \\ & V_A &= 0 + 5.095 \times 0.1 \\ & V_A &= 0.5095 \ m/s \\ \text{Similarly,} & V_B &= 0 + 3.924 \times 0.1 \\ & V_B &= 0.3924 \ m/s \\ \therefore & \text{Relative velocity of } A \ w.r.t. \ B &= V_A - V_B \\ &= 0.5095 - 0.3924 \simeq 0.12 \ m/s \end{array}$$

17. (c)

 $5g(2.1) = \frac{1}{2} \times 5 \times V^2 + \frac{1}{2}k\delta^2 \qquad [\because k = 10000 \text{ N/m}]$ $\Rightarrow \qquad 10.5g = 2.5V^2 + \frac{1}{2} \times 10000 \times (0.1)^2$ $\Rightarrow \qquad 10.5 \times 9.81 = 2.5 V^2 + 50$ $\Rightarrow \qquad V^2 = 21.202$ $\therefore \qquad V = 4.6 \text{ m/s}$

18. (c)

here,

Coefficient of restitution,

 $e = -\frac{\Delta V}{\Delta u} = -\frac{v_2 - v_1}{u_2 - u_1}$ $u_2 = 0,$ $v_2 = 0$ $e = \frac{v_1}{u_1}$

when ball is dropped from height,

u = 0

 $v^2 - u^2 = 2 ah$

Let final velocity is u_1

$$u_1^2 = 2ah_1$$

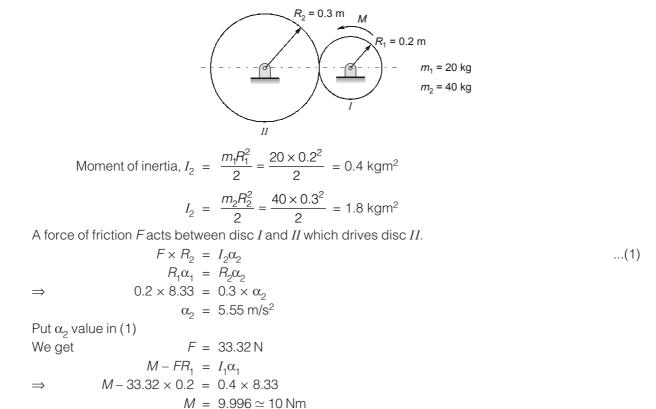
$$v_1^2 = 2ah_2$$

$$e^2 = \left(\frac{v_1}{u_1}\right)^2 = \frac{h_2}{h_1}$$

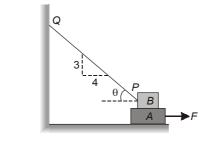
$$h_2 = h_1 \times e^2 = 0.36 \text{ m}$$

.:.

19. (a)

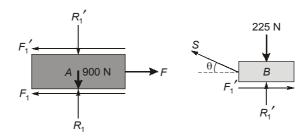


20. (a)



 $\tan \theta = \frac{3}{4}$

The free body diagrams of the blocks are shown below.



 $F_1 = \mu R_1$ and $F'_1 = \mu R'_1$...(i)

From equilibrium of block A,

$$F - F_1 - F_1' = 0$$
 ...(ii)

and

 $R_1 - W_1 - R_1' = 0$...(iii)

$$\Rightarrow$$

 $R_1 = \frac{F_1}{\mu} = W_1 + \frac{F_1'}{\mu}$...(iv)

From the equilibrium of block B,

$$F_1' - S\cos\theta = 0 \qquad \dots (v)$$

$$R_1' + S\sin\theta - W_2 = 0 \qquad \dots (vi)$$

 \Rightarrow

and

$$F_1' = \frac{W_2}{1/\mu + \tan\theta} \qquad \dots (vii)$$

From equations (ii), (iv) and (vii), we get

$$F = \mu W_1 + \frac{2W_2}{\frac{1}{\mu} + \tan\theta} = 0.3 \times 900 + \frac{2 \times 225}{\frac{1}{0.3} + \frac{3}{4}} = 380.2$$
N

21. (a)

$$x = 10 \sin 2t + 15 \cos 2t + 100$$

$$v = \frac{dx}{dt} = 20 \cos 2t - 30 \sin 2t$$

$$a = \frac{dv}{dt} = -40 \sin 2t - 60 \cos 2t \qquad \dots(i)$$
For a_{\max} , $\frac{da}{dt} = 0$

$$\Rightarrow -80 \cos 2t + 120 \sin 2t = 0$$

$$\tan 2t = \frac{2}{3}$$

$$\Rightarrow \qquad 2t = 33.69$$
Now using equation (i), we get
$$a_{\max} = -40 \sin (33.69) - 60 \times \cos (33.69) = -72.11 \text{ mm/s}^2$$

22. (a)

Considering velocities to the right as positive,

The initial momentum of the system =
$$\frac{W+W}{g}V_0$$

The final momentum of the car = $\frac{W}{g}(V_0 + \Delta V)$

The final momentum of the man = $\frac{W}{g}(V_0 + \Delta V - U)$

Since no external forces act on the system, the law of conservation of momentum gives,

$$\frac{W+W}{g}V_0 = \frac{W}{g}(V_0 + \Delta V) + \frac{W}{g}(V_0 + \Delta V - U)$$

 $\Rightarrow \qquad W\Delta v - wu + w\Delta v = 0$

$$\therefore \qquad \Delta V = \frac{WU}{W+W}$$

23. (a)

Given:Speed, u = 25 m/s; diameter, d = 50 cm = 0.5 m; Radius, r = 0.25 m We know that, $v^2 = u^2 + 2as$ $0 = (25)^2 + 2 \times a \times (25)$ $a = \frac{-625}{50} = -12.5$ m/s²

[Here minus sign represents retardation]

Angular retardation of the wheel,

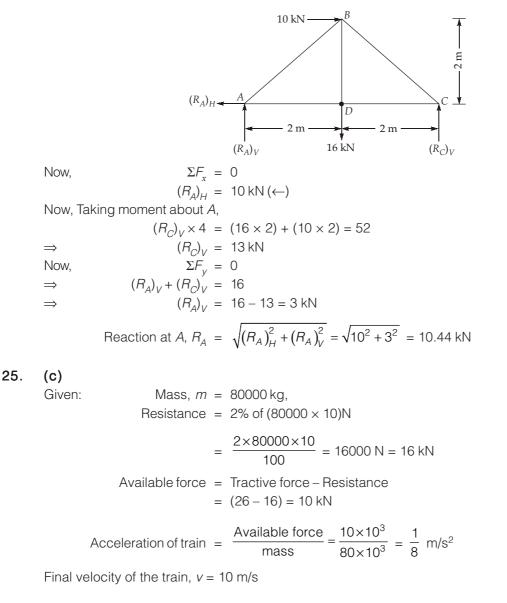
$$\alpha = \frac{a}{r} = \frac{-12.5}{0.25} = -50 \text{ rad/s}^2$$

 $\alpha = 50 \text{ rad/s}^2$ (Retardation)

[Minus sign indicates retardation]

24. (c)

Let, R_A and R_C are the support reactions at A and C respectively. Support C is a roller support so there will be only vertical reaction at C.



© Copyright: **MADE EASY**

.:.

v = u + at $10 = 0 + \left(\frac{1}{8} \times t\right)$ t = 80 s

26. (c)

Given:
$$m_A = 15 \text{ kg}, m_B = 10 \text{ kg}$$

For mass B , $m_B g - T = m_B a$
 $10g - T = 10 a$...(i)
For mass A , $T = m_A a$
 $T = 15 a$...(ii)
Addition equation (i) and (ii)
 $(10g - T) + (T) = (15 + 10)a$
 $a = \frac{10g}{25} = \frac{10 \times 10}{25} = 4 \text{ m/s}^2$

Acceleration, $a = 4 \text{ m/s}^2$

27. (b)

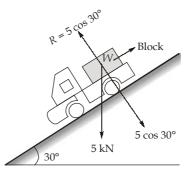
Given: Angle of inclination, $\alpha = 30^{\circ}$; Deceleration, $a = 1 \text{ m/s}^2$; Weight of block, W = 5 kNCoefficient of friction, $\mu = 0.3$

 \therefore As truck is decelerated, the load will tend to slip forward (i.e. downward) Force due to deceleration, $F_1 = m \cdot a$

$$= \left(\frac{5 \times 10^3}{10}\right) \times 1 = 500 \text{ N}$$

Component of the load along the plane,

 $F_2 = W \sin \theta = (5 \text{ kN}) \sin 30^\circ = 2.5 \text{ kN}$



... Total force that will cause slipping:

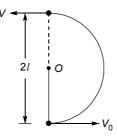
$$F_{\text{net}} = F_1 + F_2 = 0.5 + 2.5 = 3.0 \text{ kN}$$

Force of friction = $\mu W \cos \theta = 0.3 \times 5 \times \cos 30^\circ$
= 1.5 × 0.866 kN = 1.30 kN

Factor of safety =
$$\frac{\text{Force of friction}}{\text{Force causingslipping}} = \frac{1.30}{3.00} = 0.433$$

28. (d)

Let the bob is given horizontal speed $\rm V_{0}$ at the bottom.



By energy conservation,

So,
$$\frac{1}{2}mV_0^2 = \frac{1}{2}mV^2 + mg \times (2l)$$

or, $mV^2 = mV_0^2 - 4 mgl$...(1)

Also, at the top most point, force balance is,

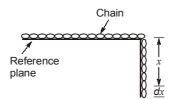
 $mg + T = \frac{mV^2}{l}$ $mV^2 = mgl + Tl$ $mV_0^2 = 5 mgl + Tl \qquad (using (1))$

For minimum V_0 , *T* should be zero

 $\therefore \qquad \qquad V_0 = \sqrt{5gl}$

29. (d)

or



The potential energy of $\frac{l}{3}$ of the chain that overhangs is

$$u_1 = \int_{0}^{l/3} -\frac{mgx}{l} dx = \frac{-mgl}{18}$$

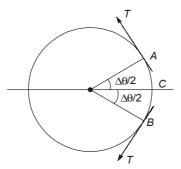
The potential energy of the full chain when it completely slips off the table is

$$u_{2} = \int_{0}^{l} -\frac{mgx}{l} dx = \frac{-mgl}{2}$$

The loss in $PE = \frac{-mgl}{18} - \left(\frac{-mgl}{2}\right) = \frac{4mgl}{9}$

This should be equal to gain in kinetic energy, but the initial kE is zero. Hence this is the kE when the chain completely falls off the table.

30. (a)



Consider a small part ACB of the ring that subtends an angle $\Delta \theta$ at the centre. Let *T* be tension in the ring. Δm be the mass of small element.

$$\Rightarrow \qquad 2T\sin\frac{\Delta\theta}{2} = \Delta m \left(\frac{v^2}{r}\right) \qquad \dots (1)$$

Length of arc ACB is $R\Delta \theta$.

Now,
$$\Delta m = \frac{M}{2\pi R} \times R\Delta \theta = \frac{M\Delta \theta}{2\pi}$$

$$\Rightarrow \qquad 2T\sin\frac{\Delta\theta}{2} = \frac{M\Delta\theta}{2\pi} \times \frac{v^2}{R}$$

$$\Rightarrow \qquad T = M \times \frac{v^2}{2\pi R} \times \frac{\Delta \theta/2}{\sin(\Delta \theta/2)} = \frac{Mv^2}{2\pi R} \qquad \left[\because \text{ for small angle, } \sin\frac{\theta}{2} = \frac{\theta}{2}\right]$$