CL	ASS T	ES1	Г								
						S.No.	: 11 IC	i_CE_S+T_2	31019		
			Environmental En				ental Enginee	ering			
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612											
CLASS TEST 2019-2020 CIVIL ENGINEERING											
		Date of Test : 23/10/2019									
ANSWER KEY > Environmental Engineering											
1.	(b)	7.	(c)	13.	(a)	19.	(a)	25.	(c)		
2.	(b)	8.	(c)	14.	(a)	20.	(a)	26.	(b)		
3.	(c)	9.	(d)	15.	(a)	21.	(d)	27.	(b)		
4.	(d)	10.	(a)	16.	(b)	22.	(b)	28.	(b)		
5.	(d)	11.	(d)	17.	(a)	23.	(a)	29.	(a)		
6.	(a)	12.	(c)	18.	(a)	24.	(a)	30.	(c)		

DETAILED EXPLANATIONS

1. (b)

Number of air changes required per hour = 30 Volume of air in the room needed to be changed = 24 m^3 Total volume of air required to be changed per hour = $24 \times 30 = 720 \text{ m}^3/\text{hr}$ Hence, the minimum required capacity of the exhaust ton = $720 \text{ m}^3/\text{hr}$

2. (b)

$$S_y = n - S_R$$

= 40 - 15 = 25%
= 0.25
Change in storage = $S_y \times \text{Area} \times \text{Drop}$ in the level of water
= 0.25 × 32 × 1.2
= 9.6 ha-m

3. (c)

Expanded depth of filter bed, $D_e = \frac{(1-n)D}{(1-n_e)}$

$$D_e = \frac{(1-0.5) \times 0.6}{(1-0.6)} = 0.75 \,\mathrm{m}$$

4. (d)

6.

Energy content on an ash free basis = $\frac{100}{100 - mc\% - ash\%} \times energy discarded$

$$= \frac{100}{100 - 16 - ash\%} \times 15000 = 18750$$

Ash% = 4%

$$Q = 4637\sqrt{P} \left[1 - 0.01\sqrt{P} \right]$$

where, *P* is population in thousand

P = 169000 = 169 thousand

...

...

 $Q = 4637\sqrt{169} \left[1 - 0.01\sqrt{169} \right]$

7. (c)

Two sections are hydraulically equivalent when

 $Q_1 = Q_2$ for full discharge condition on the same slope $Q_{cir} = Q_{sq}$

$$\Rightarrow \qquad \frac{\frac{\pi}{4}D^2}{n} \left(\frac{D}{4}\right)^{2/3} \sqrt{s} = \frac{1}{n} \times B^2 \times \left(\frac{B}{4}\right)^{2/3} \sqrt{s}$$

 \Rightarrow

 \Rightarrow

$$D^{8/3} = \frac{4}{\pi} B^{8/3}$$

 $D = 1.095 \,\mathrm{B} \simeq 1.1 \,\mathrm{B}$

8. (c)

Amount of chlorine required daily = $0.3 \times 30000 \times 150$ = 1.35×10^6 mg - 1.35 kg

$$1.35 \times 10^{\circ} \text{ mg} = 1.35 \text{ kg}$$

Amount of bleaching powder required daily = $\frac{1.35 \times 100}{30}$ = 4.5 kg

:. Annual consumption of bleaching powder = 4.5×365

= 1642.5 kg

= 1.64 tonnes

9. (d)

•.•

$$Q = CAS$$

$$20 \times 10^{-3} \text{ m}^3/\text{sec} = \frac{0.6}{60 \times 60} \times \left(\frac{\pi D^2}{4}\right) \times 3$$
$$D = 7.14 \text{ m}$$

$$Al_{2}(SO_{4})_{3} \cdot 18H_{2}O + 3Ca(HCO_{3})_{2} \rightarrow 3CaSO_{4} + 2Al(OH)_{3}(\downarrow) + 6CO_{2}$$

Each mole of alum (mol. mass = 666) is supposed to produce 2 moles of $[Al(OH)_3]$ precipitate. In other words, 666 kg of alum produces 2 × 78 kg of sludge precipitate as $Al(OH)_3$.

 \therefore 1 kg alum will produce = $\frac{2 \times 78}{666}$ = 0.234 kg of sludge

:. 500 kg alum produces sludge = $0.234 \times 500 = 117$ kg $\simeq 120$ kg

13. (a)

In this disinfection process, we have the relationship,

	$tC^n = k$	
where,	t = time required to kill all pathogenic organisms	
	C = concentration of disinfectant	
	n = dilution coefficient	
	k = constant	
<i>.</i>	$t_1 C_1^n = t_2 C_2^n$	(i)
In our case,	n = 1	
	$t = \frac{L}{V}$	
	L = length of pipe, $V =$ velocity of flow	
	$t = \frac{L}{Q/A} = \frac{L \times A}{Q}$	
	$C = \frac{W}{Q}$	

9

where,

W = weight of disinfectant per day

Q = discharge per day

Substituting C and t in equation (i),

$$\frac{L \times A}{Q_1} \times \frac{W_1}{Q_1} = \frac{L \times A}{Q_2} \times \frac{W_2}{Q_2}$$

 \Rightarrow

$$W_2 = \frac{Q_2^2}{Q_1^2} \times W_1 = \left(\frac{28}{22}\right)^2 \times 40 \text{ kg/d} = 64.79 \text{ kg/day}$$

14. (a)

Quantity of ferrous sulphate = $\frac{12 \times 16 \times 10^6}{10^6} = 192 \text{ kg}$

Chemical reaction:

 $\text{FeSO}_4 \cdot 7\text{H}_2\text{O} + \text{Ca(OH)}_2 \rightarrow \text{Fe(OH)}_2 + \text{CaSO}_4 + 7\text{H}_2\text{O}$ $Ca(OH)_2 \rightarrow CaO + H_2O$ and (Molecular weight of $FeSO_4 \cdot 7H_2O = 278$, Molecular weight of CaO = 56) : 278 kg of ferrous sulphate will react with 56 kg of lime.

Hence quantity of lime corresponding to 192 kg of ferrous sulphate = $\frac{56}{278} \times 192 = 38.68$ kg

15. (a)

Total hardness =
$$\left[Mg^{2+} \right] \times \frac{\text{Eq. wt of } \text{CaCO}_3}{\text{Eq. wt of } Mg^{2+}} + \left[Ca^{2+} \right] \times \frac{\text{Eq. wt of } CaCO_3}{\text{Eq. wt of } Ca^{2+}}$$

= $\left(24 \times \frac{50}{12} \right) + \left(80 \times \frac{50}{20} \right) = 100 + 200 = 300 \text{ mg/}l$

16. (b)

...

 \Rightarrow

 \Rightarrow

Flow velocity,
$$v = 0.4$$
 m/s
Flow velocity, $v = \frac{Q}{BH}$
where,
 $H = \text{Depth of waste water at peak flow = 0.95 m}$
 $B = \text{Width of grit chamber}$
 \therefore
 $\frac{Q}{B} = v \times H$
 \Rightarrow
 $\frac{Q}{B} = 0.4 \times 0.95 = 0.38 \text{ m}^3/\text{s/m}$
Settling velocity, $V_s = \frac{Q}{BL} = \frac{0.38}{8.5} = 0.045 \text{ m/s}$
Settling velocity for 85% removal efficiency,
 $V'_s = 0.85 \times V_s$
 \Rightarrow
 $V'_s = 0.85 \times 0.045 = 0.038 \text{ m/s}$
 $V'_s = \frac{Y_w}{18} \left(\frac{G_s - 1}{\mu}\right) d^2$

www.madeeasy.in

$$\Rightarrow$$

 \Rightarrow

 \Rightarrow

$$0.038 = \frac{10000}{18} \left(\frac{2.5 - 1}{1.002 \times 10^{-3}} \right) \times d^2$$

 $[\gamma_w = \text{unit weight of water} = 1000 \text{ kg/m}^3 \times 10 \text{ m/s}^2 = 10^4 \text{ N/m}^3]$ $d^2 = 4.57 \times 10^{-8}$

 $d = 2.14 \times 10^{-4} \text{ m} = 0.214 \text{ mm} \simeq 0.21 \text{ mm}$

17. (a)

The computation of increase in population per decade and incremental increase is shown below in table.

Year	Population	Increment per decade	Incremental Increase		
1940	200000	180500	65800		
1960 1970	495500 565700	115000 70200 84600	- 44800 14400		
1980	650300	0+000			
	Total	450300	(–) 96200		
4	Average	$\frac{450300}{4}$ = 112575	$-\frac{96200}{3} = -32067$		

We know that population after n decade by incremental increase method will be,

$$P_n = P + nI + \frac{n(n+1)}{2} \times r$$

Here,

$$I = 112575, r = -32067 \text{ and } n = 2$$

Expected population in the year 2000 AD (i.e. after 2 decades) is

$$P_{2000} = 650300 + 2(112575) + \frac{2(2+1)}{2} \times (-32067)$$

Hence water requirement in 2000 AD @ 225 litres/head/day

=
$$779249 \times 225$$

= 175.33×10^{6} litres/day
 $\simeq 175.3$ MLD

18. (a)

(i) Lime (CaO) required for alkalinity (CaCO₃) Molecular weight of CaO = 40 + 16 = 56Molecular weight of CaCO₃ = $40 + 12 + 3 \times 16 = 100$

CaO required for 150 mg/l alkalinity = $150 \times \frac{56}{100} = 84$ mg/l

$$= \frac{84 \times 10^{-6} \text{ kg}}{l} = \frac{84 \text{ kg}}{10^{6} l}$$

(ii) Lime required for MgSO₄

Molecular weight of MgSO₄ = $24 + 32 + 4 \times 16 = 120$ CaO required for 90 mg/l of MgSO₄

$$= 90 \times \frac{56}{120} = 42 \text{mg}/l = \frac{42 \text{kg}}{10^6 l}$$

 \therefore Total lime required = 84 + 42 = 126 kg/10⁶ l Total lime required to treat 10⁶ litres of water = 126 kg

19. (a)

Bacterial growth is logarithmic and is described by the equation,

$$N_t = N_0 e^{\mu t}$$

 \Rightarrow

$$10^8 = 20e^{0.02 \times t}$$

 \Rightarrow

$$t = 771.247$$
 minute $= \frac{771.247}{60}$ hrs $= 12.85$ hrs

20. (a)

Total green house gases produced by 150g of MSW

= 60g of
$$CO_2$$
 + 30g of CH_4 = 90 gm

600 tonnes of MSW will produce green house gases

$$= 600 \times 10^6 \times \frac{90}{150} = 360 \times 10^6 \text{ g/day}$$

Per capita average production of green house gases

$$= \frac{360 \times 10^6}{20 \times 10^5} = 180 \text{ g/day/capita}$$

21. (d)

Surface loading rate = $\frac{720}{12 \times 1.5}$ = 40 m³/hr/m²

Detention time =
$$\frac{V}{Q} = \frac{12 \times 1.5 \times 0.8}{720} \times 60 = 1.2$$
 minutes

22. (b)

...

Sewage produced = 1200000 litres/day 5 day BOD of sewage = 210 ppm = 210 mg/litre BOD of effluent = 22 mg/litre BOD removed by pond = (210 - 22) = 188 mg/litre

:. BOD removed per day = $1200000 \times 188 = 225.6 \times 10^{6} \text{ mg} = 225.6 \text{ kg}$

It is given that organic loading = 60 kg/ha/day

 $\therefore \qquad \text{Required area} = \frac{\text{Sewage consumed}}{\text{Organic loading}} = \frac{225.5}{60} = 3.76 \text{ ha}$

23. (a)

Total water filtered in a day = $1 \times (24 \times 60 \times 60) = 86400 \text{ m}^3/\text{day}$

Total surface area of filter required =
$$\frac{86400 \text{ m}^3/\text{day}}{140 \text{ m}^3/\text{day}/\text{m}^2} = 617.14 \text{ m}^2$$

Area of one filters required = $6 \times 8 = 48 \text{ m}^2$

Total number of filter = $\frac{617.14}{48} = 12.86 \simeq 13$

As three filters are out of service, number of filters working = 13 - 3 = 10Total surface area of ten filters = $48 \times 10 = 480$ m²

New loading rate =
$$\frac{86400 \text{ m}^3/\text{day}}{480 \text{ m}^2} = 180 \text{ m}^3/\text{day/m}^2$$

26. (b)

Sludge solid removal in sedimentation tank = $0.7 \times 300 = 210 \text{ mg/}l$

:. Mass of total solids removed per 8 million litres = $\frac{210 \times 8 \times 10^6}{1000} = 1.68 \times 10^6 \text{ gm}$

$$\therefore \qquad \text{Sludge volume} = \frac{28 \times 10^6}{1} = 28 \times 10^6 \text{ cc}$$
$$= 28 \times 10^6 \text{ ml}$$
$$= \frac{28 \times 10^6}{1000} \text{ litres} = 28000 \text{ litres}$$

27. (b)

Intensity level =
$$10\log\left(\frac{I}{I_0}\right)$$

In first source, $\frac{I}{I_0} = 4$

:. Thus increased intensity level =
$$10\log\left(\frac{I}{I_0}\right) = 10\log(4) = 6 \text{ dB}$$

and in second source, $\frac{I}{I_0} = 8$

:. Thus increased intensity level =
$$10\log\left(\frac{I}{I_0}\right) = 10\log(8) = 9dB$$

28. (b)

If waste water sample is mixed with pure distilled water and incubated for 5 days, then BOD_5 of sewage sample

$$= (DO_{initial} - DO_{final}) \times \left[\frac{Volume of diluted sample}{Volume of undiluted sewage sample} \right]$$

However, when pure distilled water is not used for dilution of the sewage sample, then BOD₅ of sewage sample can be calculated by using modified equation as,

$$= \left[\left(D_1 - D_2 \right) - \left(B_1 - B_2 \right) \cdot f \right] \text{ Dilution factor}$$

where,

 B_1 = Initial DO of dilution water

 B_2 = DO of dilution water after incubating for 5 days in a coperate BOD bottle

f = Ratio of dilution water volume in wastewater test to the dilution water volume in BOD test on dilution water

$$D_{1} = 7.5 \text{ mg}/l$$

$$D_{2} = 2.1 \text{ mg}/l$$

$$B_{1} = 8.0 \text{ mg}/l$$

$$B_{2} = 6.8 \text{ mg}/l$$
Dilution factor $= \frac{400 \text{ mL}}{20 \text{ mL}} = 20$

$$\therefore \text{ BOD}_{5} \text{ of sewage } = \left[(7.5 - 2.1) - (8.0 - 6.8) \times \frac{380}{400} \right] \times 20$$

$$= [5.4 - 1.2 \times 0.95] \times 20 = 85.2 \text{ mg}/l$$

29. (a)

30.

 $Q = 4230 \text{ m}^3/\text{d}$ $N_t = N_0 e^{-0.156t}$

Let x be the no. of microorganisms present initially.

97% kill of micro-organisms implies that at time 't' 3% of micro-organisms are still surviving.

:. Micro-organisms surviving at time 't' =
$$\frac{3}{100}x$$

$$\therefore \frac{3}{100}x = x \cdot e^{-0.156t}$$

$$\therefore t = 22.48 \text{ min}$$

$$t = 0.0156 \text{ days}$$

$$\therefore \text{ Volume} = Q.t$$

$$= 4230 \times 0.0156$$

$$= 65.99 \text{ m}^{3}$$
(c)
$$Q = \frac{2\pi T(s_{1} - s_{2})}{In\left(\frac{r_{2}}{r_{1}}\right)}$$

$$T = \frac{55 \times 10^{-3} \times 24 \times 60 \times 60 \times 60}{T}$$

$$= \frac{55 \times 10^{-3} \times 24 \times 60 \times 60 \times \ln\left(\frac{120}{12}\right)}{2 \times \pi \times (3.5 - 0.75)}$$

= 633.25 m²/day