
1. (c)

2. (a)

3. (a)

4. (c)

5. (c)

6. (a)

7. (d)

8. (b)

9. (b)

10. (d)

11. (b)

12. (c)

13. (c)

14. (c)

15. (a)

16. (d)

17. (a)

18. (c)

19. (c)

20. (b)

21. (a)

22. (d)

23. (c)

24. (c)

25. (b)

26. (a)

27. (c)

28. (b)

29. (c)

30. (d)

S.No. : 04 BS_CS_A_111019

Programming and Data Structures

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST
2019-2020

ANSWER KEY Programming and Data structures

COMPUTER SCIENCE & IT

Date of Test : 11/10/2019

CLASS TEST

© Copyright :www.madeeasy.in

8 Computer Science & IT

Detailed Explanations

1.1.1.1.1. (c)(c)(c)(c)(c)
Example:Example:Example:Example:Example: 3-ary tree

d = 0 3 = 1 node (root)
d = 1 3 = 3 leaf nodes
d = 2 3 = 9

⇒ 0

1

2

⇒
⇒ leaf nodes, etc.

At depth 5 ⇒ The maximum number of nodes = 35

For K-ary tree ⇒ The maximum number of nodes at depth d = Kd

If 5 is maximum depth of any node of T, then maximum number of leaves = 35.

2.2.2.2.2. (a)(a)(a)(a)(a)

for:

P << 1;

Q = P + i;

P P P PQ Q Q Q

 i = 0 i = 1 i = 2 i = 3

2 2 2 22 2 3 4

2 2 2 22 3 4 5

Iterations of for statement

P = 2, Q = 5
[Note:Note:Note:Note:Note: P << 1 will not change the value of P, but P = P << 1 will changes the value of P]

3.3.3.3.3. (a)(a)(a)(a)(a)
int (**p) [];
A pointer to a pointer to an array of integers.

4.4.4.4.4. (c)(c)(c)(c)(c)

1 2 9 8 3 7 2 2 1 4 5 4

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018 1020 1022

The output of the statement
printf (“%d%d%d”, (a[1] – a[0]), (a[1][0] – a[0][0]), (a[1][0][0] – a[0][0][0]));

it a[1] – a[0] = 1012 – 1000 =
12
2

 = 6 [∵ 1012 is the address of ‘a[1]’ and 2 is the size of element]

Similarly, we can calculate
a[1][0] – a[0][0] = 6
a[1][0][0] – a[0][0][0] = 1
So, the output is 6, 6, 1.

© Copyright :www.madeeasy.in

CT-2019 | CS • Prog. and Data Structures 9

5.5.5.5.5. (c)(c)(c)(c)(c)
(*p) is a constant value, we cannot modify a constant value.

6.6.6.6.6. (a)(a)(a)(a)(a)
Initial values i = –3, j = 2, k = 0.
&& has more priority than ++
∴ m = {(++i) && (++j)}  (++k);
Since both ++i and ++j are non-zero hence expression becomes true.
++k is not checked and m = truth value of expression = 1.
So, i = –2, j = 3, k = 0, m = 1.

7.7.7.7.7. (d)(d)(d)(d)(d)

Push (C)
{

insert C;
}

Pop ()
{

delete minimum element;
}
So for sequenc of operation the key choosen are in strictly decreasing order.

8.8.8.8.8. (b)(b)(b)(b)(b)

The given expression is: (a – b)↑ (p + q) ↑ (r ∗ s ∗ t)

= (ab–) ↑ (pq+) ↑ ((rs∗) ∗ t)

= (ab–)↑ (pq+) ↑ ((rs∗)∗t)

= (ab–) ↑ (pq + rs∗t∗)↑
= (ab – pq + rs∗ t∗) ↑↑
= ab – pq + rs ∗ t ∗ ↑↑

9.9.9.9.9. (b)(b)(b)(b)(b)

n = 0 1 2 3 n–1.

m = 0
1
2

(m–1)

. .
 .

. .
 .

. .
 .

. . .

. .
 .

(,) entryi thj

. . .

(m × n)

It is stored in column major order.
We need to cross (j – 1) columns, since we have ‘m’ elements in 1 coloum.
∴ [m (j – 1)] + in jth column (i – 1) elements to be crossed.
∴ (i, j)th location is = m * (j – 1) + i.

10.10.10.10.10. (d)(d)(d)(d)(d)
Stack, Queue, Linked list:Stack, Queue, Linked list:Stack, Queue, Linked list:Stack, Queue, Linked list:Stack, Queue, Linked list: Insertion and deletion of an element can be done only at one place.
Deque: Deque: Deque: Deque: Deque: Insertions and deletions can take place at both ends but not in the middle.

© Copyright :www.madeeasy.in

10 Computer Science & IT

11.11.11.11.11. (b)(b)(b)(b)(b)
f(2, 8) returns 28 value = 256

f(2,8)

f(2,4)

f(2,2) f(2,2)

f(2,1) f(2,1) f(2,1) f(2,1)

f(2,4)

f(2,2) f(2,2)

f(2,1) f(2,1) f(2,1) f(2,1)

2×1 1× 2×1 1× 2×1 1× 2×1 1× 2×1 1× 2×1 1× 2×1 1×2×1 1×

2 2 2 2 2 2 2 2

2
2

2
2

2
2

2
2

2
4

2
4

2
8

= 256

12.12.12.12.12. (c)(c)(c)(c)(c)

1 2 3 4 5

0 1 2 3 4 5

front rear

[After first forforforforfor loop execution]

x = 1 ⇒ q.dequeue (); 1 will be deleted form location 0
q.enqueue (q.dequeue ()); 2 will be deleted and inserted at location 5

x = 2 ⇒ 3 will be deleted from location 2
4 will be inserted at location 0 [circular queue]

x = 3 ⇒ 5 will be deleted
2 will be inserted at location 1

4 2

0 1 2 3 4 5

∴ The value present in circular queue = 4 and 2. Therefore the sum = 4 + 2 = 6.

13.13.13.13.13. (c)(c)(c)(c)(c)
To evaluate the postfix expression we used operand stack that is when operand comes push it into the
stack, when 1st operator come pop the top two elements of the stack and perform the operation and result
push back into the stack.

1

8

8

Push the operands one by one when operator comes, POP the top two operands, evaluate the value and
then push result on to the stack.

1

8
/ 8 8

8

8

↑ + − +

Scanner scans power operator then pop 1 and 9, evaluate 9^1 and then push result back on the stack.

/ + 8 – 8 +

scanner

8
8
8

⇒
+ 8 – 8 +

scanner

1
8 ⇒

– 8 +

scanner
8
9

⇒
+

scanner
8
1

⇒ 9

© Copyright :www.madeeasy.in

CT-2019 | CS • Prog. and Data Structures 11

14.14.14.14.14. (c)(c)(c)(c)(c)

Let 1 2 3[] [] []
91 31 41

(planes) (rows) (colums)

j k
A r r r
i

For row major orderFor row major orderFor row major orderFor row major orderFor row major order

loc (A(i, j, k)) = Base Address + (i – 11111)r2r3 + (j – 1)r3 + (K – 1)

= 100 + [50 – 0] × 31 × 41 + [30 – 0] × 41 + [20 – 0]

= 100 + 63550 + 1230 + 20

= 64900

15.15.15.15.15. (a)(a)(a)(a)(a)
The output sequence printed by the given code is: 7 3 5 8 6 0 7 1 8 2.
Last output is : 2.

16.16.16.16.16. (d)(d)(d)(d)(d)
Complete binary tree can make smallest possible height of Binary Search Tree (T).

, ⇒ 2 ≤ n ≤ 3 ⇒ h = 1 (smallest)

 . . . ⇒ 4 ≤ n ≤ 7 ⇒ h = 2

Similarly 8 ≤ n ≤ 15 ⇒ h = 3
∴ Smallest height possible: [when complete tree]

h = ()n 1
2log 1+  − 

∴ Largest height possible: [When skew tree]
h = n – 1

Smallest possible height = (280 1)
2log 1+  −  = 9 – 1 = 8

17.17.17.17.17. (a)(a)(a)(a)(a)
In given code 2nd else if statement return 1 when both tree values are different.
It returns 1, when both trees are different
It returns 0, when both trees are same recursively.

18.18.18.18.18. (c)(c)(c)(c)(c)

Number of distinct BST’s =
102

5 42
1 5 1

n
n CC

n
= =

+ +

19.19.19.19.19. (c)(c)(c)(c)(c)

35

24

23 20 14

26

22

Only option (c) represents max-heap.

© Copyright :www.madeeasy.in

12 Computer Science & IT

20.20.20.20.20. (b)(b)(b)(b)(b)

q! = NULL is enough to detect the loop in given program.

21.21.21.21.21. (a)(a)(a)(a)(a)
p = 2
q = 3

***** (A[0] + 0) = A[0] [0] = *****(*****(A + j) + i) = 1

***** (A[1] + 0) = A[1] [0] = 2
Similarly it will access all the elements.
∴ 1 2 3 4 5 6 is the output printed by the program.

22.22.22.22.22. (d)(d)(d)(d)(d)
Assume initially X is pointing to the first node.
1. Y = X → next;
2. X → next = Z;
3. Z = X;
4. X = Y;

 3 Z
10

X

 4 X
10

Y

30

Z=NULL
2 1

×

In the first iteration of loop, list is modified as above.
In the second iteration of the loop, second node next is the first, which is shown below.

X YZ
10 20 30

Z
13

2
4 X

×

Similarly after the third iteration, 3rd node next is the second node. After the third iteration the list is reversed
as following.

10 20 30

X = NULL head

While loop exit due to X = NULL and finally executes *****head = Z, so head will be double pointer to the
node 30.
∴ list is reversed

23.23.23.23.23. (c)(c)(c)(c)(c)
The function prints first n fibbonacci numbers. Note that 0 and 1 are initially there in the queue. This is the
initial condition, for fibonacci series. In every iteration of loop, sum of two queue items is enqueued and the
front item is dequeued i.e., sum of previous 2 numbers as in fibonacci series.

24.24.24.24.24. (c)(c)(c)(c)(c)
Here two pointers are used gate1 and gate2. Gate 1 pointer points to beginning and gate 2 points to the
end. Loop is set up that compares the characters pointed by these two pointers. If the characters do not
match, then it’s returning 0 i.e. it is not a palindrome.
It returns1 for both even and odd palindrome (i.e., when match occurs for entire loop).

© Copyright :www.madeeasy.in

CT-2019 | CS • Prog. and Data Structures 13

25.25.25.25.25. (b)(b)(b)(b)(b)

a b d e

NULL
Head P1

a b c d e

NULL
Head P1 (data = data);→ → P P1 2

a b c d e

NULL
Head P1

d

(next = → next);→ P P1 2

a b c d e

NULL
Head P1

d

P2 will be free

P2

P2

26.26.26.26.26. (a)(a)(a)(a)(a)
While performing pop operation on to stack we always perform “Underflow condition check”, to ensure if
stack is empty.

Number of stacks possible is
P
Q

.

.

Stack 0 Stack 1 Stack 2

–1 0 Q –1 Q 2Q –1 2Q

First element of next stack pointer Ti+1 =
P
Q

 (i + 1)

∴ Underflow condition for stack i is Ti ==
P

1
Q

 × −  
i

27.27.27.27.27. (c)(c)(c)(c)(c)

Q

P

2
3 1

4

λp

λp

λp rprp

rp

(1) P → rp = Q → rp;
(2) Q → rp = P;
(3) P → �p = Q;
(4) (P → rp) → �p = P;
So option (c) is correct.

© Copyright :www.madeeasy.in

14 Computer Science & IT

28.28.28.28.28. (b)(b)(b)(b)(b)

λp λp rprp Pλp rp

1. (P) r = P r ;→ p pλp → →

2. (P r) = P ;→ → →p p pλ λ

29.29.29.29.29. (c)(c)(c)(c)(c)

10

20 70

30

110

120

130

40

RR

90

20

30 90

70

110

120

130

40
L

+2

10

20 90

70

110

120

130

30

40

R

L

+2

+1

LR unbalance occurred and
we have to apply LL rotation
followed by RR

LL

10

L

Left subtree postorder traversal is: 10, 20, 40, 90, 70 and 30. So the last element is 30.
Left subtree preorder traversal is: 30, 20, 10, 70, 40 and 90. So the last element is 90.
The difference between last element of postorder and the last element of preorder traversal of left subtree
of the resultant AVL tree = 90 – 30 = 60.

30.30.30.30.30. (d)(d)(d)(d)(d)

50

27 88

936534

29 44 52 77 92

12

4

16

Array A:Array A:Array A:Array A:Array A: 50 27 16 4 12 34 29 44 88 65 52 77 93 92Preorder:
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Array B:Array B:Array B:Array B:Array B: 12 4 16 29 44 34 27 52 77 65 92 93 88 50Postorder:
0 1 2 3 4 5 6 7 8 9 10 11 12 13

The one of the longest common sequence between array A and B = 12,34,52,77and 92.
The length of the LCS = 5.

