	ASS T	es	T					G_CE_D_1 ng Mathem	
Image: Ensurement India's Best Institute for IES, GATE & PSUs India's Best Institute for IES, GATE & PSUs Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
CLASS TEST 2019-2020									
						JEERIN /09/201			
ANSWER KEY > Engineering Mathematics									
1.	(b)	7.	(a)	13.	(c)	19.	(b)	25.	(d)
2.	(b)	8.	(a)	14.	(a)	20.	(d)	26.	(b)
3.	(c)	9.	(a)	15.	(c)	21.	(a)	27.	(a)
4.	(c)	10.	(b)	16.	(b)	22.	(a)	28.	(c)
5.	(b)	11.	(d)	17.	(c)	23.	(c)	29.	(d)
6.	(c)	12.	(d)	18.	(a)	24.	(a)	30.	(b)

Detailed Explanations

1. (b)

Solution of laplace equation having continuous Second order partial derivating

÷.

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

 $\nabla^2 \phi = 0$

 $\therefore \phi$ is harmonic function.

2. (b)

Median speed is the speed at the middle value in series of spot speeds that are arranged in ascending order. 50% of speed values will be greater than the median 50% will be less than the median.

Ascending order of spot speed studies are 32, 39, 45, 51, 53, 56, 60, 62, 66, 79

Median speed = $\frac{53+56}{2}$ = 54.5 km/hr

3. (c)

$$\int_{-\infty}^{\infty} p(x) \cdot dx = 1$$
$$\int_{-\infty}^{\infty} \mathcal{K} \cdot e^{-\alpha |x|} \cdot dx = 1$$

$$\int_{-\infty}^{0} K \cdot e^{\alpha x} \cdot dx + \int_{0}^{\infty} K \cdot e^{-\alpha x} = 1$$

 $\Rightarrow \qquad \frac{K}{\alpha} \left(e^{\alpha x} \right)_{-\infty}^{0} + \frac{K}{-\alpha} \left(e^{-\alpha x} \right)_{0}^{\infty} = 1$

$$\Rightarrow \qquad \frac{K}{\alpha} + \frac{K}{\alpha} = 1$$
$$2 K = \alpha$$
$$K = 0.5 \alpha$$

4. (c)

Since, $\cos 2x = \cos^2 x - \sin^2 x$, therefore $\cos 2x$ is a linear combination of $\sin^2 x$ and $\cos^2 x$ and hence these are linearly dependent.

5. (b)

Auxiliary equation is $D^{2} + 3 = 0$ i.e. $D = \pm \sqrt{3} i$

	$x = A\cos\sqrt{3}t + B\sin\sqrt{3}t$
at	t = 0, x = 1
\Rightarrow	A = 1
Now,	$\dot{x} = \sqrt{3}(B\cos\sqrt{3}t - A\sin\sqrt{3}t)$
At	$t = 0, \dot{x} = 0$
\Rightarrow	B = 0
So,	$x = \cos\sqrt{3t}$
	$x(1) = \cos\sqrt{3} = 0.99$

6. (c)

Intermediate value theorem states that if a function is continuous and $f(a) \cdot f(b) < 0$, then surely there is a root in (a, b). The contrapositive of this theorem is that if a function is continuous and has no root in (a, b) then surely $f(a) \cdot f(b) \ge 0$. But since it is given that there is no root in the closed interval [a, b] it means $f(a) \cdot f(b) \ne 0$.

So surely $f(a) \cdot f(b) > 0$ which is choice (c).

7. (a)

In option (a)

$$V_x = -2x \quad U_y = -V_x$$
$$V_y = 2y$$

 $\begin{array}{rcl} u &=& 2xy\\ u_x &=& 2y & u_y = 2x \end{array}$

(-R equation are satisfied only in option a)

8. (a)

$$f(x, y) = x^2 + 3y^2$$

 $\phi = x^2 + y^2 - 2$ and point $P \Rightarrow (1, 1)$

Normal to the surface,

$$\nabla \phi = \hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} = 2x\hat{i} + 2y\hat{j}$$

$$\nabla \phi \Big|_{\text{at P(1,1)}} = 2\hat{i} + 2\hat{j}$$

the normal vector is $\vec{a} = 2\hat{i} + 2\hat{j}$

Magnitude of directional derivative of f along \vec{a} at (1, 1) is $\Rightarrow \nabla \cdot f \cdot \hat{a}$

$$\nabla f = \hat{i} \frac{\partial f}{\partial x} + \hat{j} \frac{\partial f}{\partial y} = 2x\hat{i} + 6y\hat{j}$$
$$\nabla f|_{(1,1)} = 2\hat{i} + 6\hat{j}$$
$$\left|\vec{a}\right| = \sqrt{4+4} = 2\sqrt{2}$$
$$\hat{a} = \frac{2\hat{i} + 2\hat{j}}{2\sqrt{2}} = \frac{\hat{i} + \hat{j}}{\sqrt{2}}$$

.: Magnitude of directional derivative

$$= (2\hat{i} + 6\hat{j}) \left(\frac{\hat{i} + \hat{j}}{\sqrt{2}}\right)$$
$$= \frac{2+6}{\sqrt{2}} = \frac{8}{\sqrt{2}} = 4\sqrt{2}$$

8 Civil Engineering

9. (a)

$$I = \oint_{c} \frac{-3z+4}{(z^2+4z+5)} dz = 2\pi i \text{ (sum of residues)}$$

Poles of $\frac{-3z+4}{(z^2+4z+5)}$ are given by

$$z^{2} + 4z + 5 = 0$$
$$z = \frac{-4 \pm \sqrt{16 - 20}}{2} = \frac{-4 \pm 2i}{2} = -2 \pm i$$

Since the poles lie outside the circle
$$|z| = 1$$
.

So f(z) is analytic inside the circle |z| = 1.

Hence $\oint_c f(z) dz = 2\pi i (0) = 0$

10. (b)

Given that the partial differential equation is parabolic.

<i>:</i> .	$B^2 - 4AC = 0$	Here $A = 3$
<i>:</i> .	$B^2 - 4(3)(3) = 0$	C = 3
	$B^2 - 36 = 0$	
	$B^2 = 36$	

11. (d)

The differential equation is 3y''(x) + 27y(x) = 0The auxillary equation is

	3 <i>m</i> ² + 27	=	0
	<i>m</i> ² + 9	=	0
	т	=	±3 <i>i</i>
Solution is $y = c_1 \cos 3$	$x + c_2 \sin 3x$		
given that	<i>y</i> (0)	=	0
	0	=	<i>C</i> ₁
	<i>Y</i> ′	=	$3c_2 \cos 3x$
	<i>y</i> ′(0)	=	2000
	2000	=	$0 + 3c_2$
	<i>C</i> ₂	=	$\frac{2000}{3}$
	У	=	$\frac{2000}{3}\sin 3x$
when $x = 1$	У	=	$\frac{2000}{3}$ sin3 = 94.08

12. (d)

 $\begin{array}{ll} x + y + z &= 4 & \dots(1) \\ x - y + z &= 0 & \dots(2) \\ 2x + y + z &= 5 & \dots(3) \end{array}$

Adding (1) and (2) & (2) and (3) gives

2x + 2z = 4 and 3x + 2z = 5 which gives x = 1, z = 1 and y = 2

Alt: Option (b) can be eliminated since they do not satisfy 1st condition. Only (d) satisfies 3rd equation.

13. (c)

	Trace of $A = 14$ a + 5 + 2 + b = 14 a + b = 7 $\det(A) = 100$	(i)
	$\begin{vmatrix} a & 3 & 7 \\ 0 & 2 & 4 \\ 0 & 0 & b \end{vmatrix} = 100$	
	$5 \times 2 \times a \times b = 100$	
	10 ab = 100	
	ab = 10	(ii)
From equation (i) and (ii)		
either	a = 5, b = 2	
Or	a = 2 $b = 5$	
	a - b = 5 - 2 = 3	

14. (a)

Given differential equation is

 $x\frac{dy}{dx} + y = x^4$ $\frac{dy}{dx} + \left(\frac{y}{x}\right) = x^3$... (i)

 \Rightarrow

Standard form of leibnitz linear equation is

 $\frac{dy}{dx} + Py = Q$... (ii)

where P and Q function of x only and solution is given by

 $y(I.F.) = \int Q.(I.F.) dx + C$

where, integrating factor (I.F.) = $e^{\int P dx}$ Here in equation (i),

	$P = \frac{1}{x}$ and $Q = x^3$
	I.F. = $e^{\int \frac{1}{x} dx} = e^{\ln x} = x$
Solution	$y(x) = \int x^3 x dx + C$
given condition	$yx = \frac{x^5}{5} + C$
	$y(1) = \frac{6}{5}$
means at	$x = 1; y = \frac{6}{5}$

 $\frac{6}{5} \times 1 = \frac{1}{5} + C$ \Rightarrow $c = \frac{6}{5} - \frac{1}{5} = 1$ \Rightarrow

$$F(s) = \int_{0}^{\infty} f(t)e^{-st} dt$$

= $\int_{0}^{1} 2e^{-st} dt + \int_{1}^{\infty} 0 \cdot e^{-st} dt$
= $2\left[\frac{e^{-st}}{-s}\right]_{0}^{1} = \frac{2}{-s}\left[e^{-s} - 1\right]$
= $\frac{2(1 - e^{-s})}{s} = \frac{2 - 2e^{-s}}{s}$

16. (b)

From the diagram C is y = x

$$I = \int_{C} (x^{2} + iy^{2}) dz$$

= $\int_{C} (x^{2} + iy^{2})(dx + idy)$
= $\int_{C} (x^{2} + ix^{2})(dx + idx)$
= $\int x^{2}dx + ix^{2}dx + ix^{2}dx - x^{2}dx$
= $2i\int_{0}^{1} x^{2}dx = 2i\left(\frac{x^{3}}{3}\right)\Big|_{0}^{1} = \frac{2i}{3}$

17. (c)

$$x(ydx + xdy)\cos\frac{y}{x} = y(xdy - ydx)\sin\frac{y}{x}$$
$$\frac{ydx + xdy}{xdy - ydx} = \frac{y}{x}\tan\frac{y}{x}$$
$$y = v \cdot x$$
$$dy = vdx + xdv$$
$$\frac{vxdx + vxdx + x^{2}dv}{vxdx + x^{2}dv - vxdx} = v \tan v$$
$$\frac{xdv + 2vdx}{xdv} = v \tan v$$
$$1 + \frac{2v}{x}\frac{dx}{dv} = v \tan v$$
$$\frac{2v}{x}\frac{dx}{dv} = v \tan v - 1$$

Let

$$2\frac{dx}{x} = \left(\tan v - \frac{1}{v}\right)dv$$

Integrating both sides.

$$2 \log x = \log |\sec v| - \log v + \log c$$
$$x^{2} = \frac{c \sec v}{v}$$
$$x^{2} \frac{y}{x} = c \sec \frac{y}{x}$$
$$xy \cos \frac{y}{x} = c$$

19. (b)

 \Rightarrow

 \Rightarrow

 \Rightarrow

Let *P* be the probability that six occurs on a fair dice,

Let *X*, be the number of times 'six' occurs,

Probability of obtaining at least two 'six' in throwing a fair dice 4 times is

$$= 1 - \{P(X = 0) + P(X = 1)\}$$

= $1 - \{{}^{4}C_{0} p^{0}q^{4} + {}^{4}C_{1} p^{1}q^{3}\}$
= $1 - \left\{\left(\frac{5}{6}\right)^{4} + \left[4 \times \frac{1}{6} \times \left(\frac{5}{6}\right)^{3}\right]\right\}$
= $1 - \left\{\frac{125}{144}\right\} = \frac{19}{144}$

20. (d)

Since negative and positive are equally likely, the distribution of number of negative values is binomial with

$$n = 5 \text{ and } p = \frac{1}{2}$$

Let X represent number of negative values in 5 trials. p(at most 1 negative value)

$$= p(x \le 1)$$

= $p(x = 0) + p(x = 1)$
= $5C_0 \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^5 + 5C_1 \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^4$
= $\frac{6}{32}$

21. (a)

$$\int_{0}^{\pi} x^{2} \cos x \, dx = x^{2} (\sin x) - 2x (-\cos x) + 2(-\sin x) \Big|_{0}^{\pi}$$

$$= \pi^{2} \cdot 0 + 2\pi(-1) - 0 = -2\pi$$

22. (a)

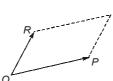
```
Let,
```

 $\sin^{-1}x = t$ $\frac{dx}{\sqrt{1-x^2}} = dt$ $I = \int_{0}^{\pi/2} t^2 dt = \left[\frac{t^3}{3}\right]_{0}^{\pi/2} = \frac{\pi^3}{24}$

23. (c)

To calculate $\frac{1}{a}$ using N-R method, set up the equation as

	oot ap the equation as	1
		$x = \frac{1}{a}$
	i.e.	$\frac{1}{x} = a$
	\Rightarrow	$\frac{1}{x} - a = 0$
	i.e.	$f(x) = \frac{1}{x} - a = 0$
	Now,	$f'(x) = -\frac{1}{x^2}$
		$f(x_k) = \frac{1}{x_k} - a$
		$f'(x_k) = -\frac{1}{x_k^2}$
	For N-R method,	$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$
	\Rightarrow	$x_{k+1} = x_k - \frac{(1/x_k - a)}{-\frac{1}{x_k^2}}$
	Simplifying which we get,	$x_{k+1} = 2x_k - ax_k^2$
24.	(a)	



The area of parallelogram OPQR in figure shown above, is the magnitude of the vector product

$$= |O\vec{P} \times O\vec{R}|$$

$$\overrightarrow{OP} = a\hat{i} + b\hat{j}$$

$$\overrightarrow{OR} = e\hat{i} + d\hat{j}$$

$$\overrightarrow{OP} \times \overrightarrow{OR} = \begin{vmatrix} i & j & k \\ a & b & 0 \\ c & d & 0 \end{vmatrix} = 0\hat{i} + 0\hat{j} + (ad - bc)\hat{k}$$

$$\overrightarrow{OP} \times \overrightarrow{OR} = \sqrt{0^2 + 0^2 + (ad - bc)^2} = ad - bc$$

25. (d)

f = U + iV $u = 3x^2 - 3y^2$ for f to be analysis, we have Cauchy-Riemann conditions, $\frac{\partial u}{\partial x} = \frac{\partial V}{\partial y}$...(i) $\frac{\partial U}{\partial y} = \frac{-\partial v}{\partial x}$...(*ii*) $6x = \frac{\partial V}{\partial Y}$ $\int \partial v = \int 6x \partial y$ V = 6xy + f(x)v = 6xy + f(x)...(*iii*) Now applying equation (ii) we get, $\frac{\partial U}{\partial y} = \frac{-\partial v}{\partial x}$ $-6y = -\left[6x + \frac{df}{dx}\right]$ $6x + \frac{df}{dx} = 6y$ $\frac{df}{dx} = 6y - 6x$ By integrating, $f(x) = 6yx - 3x^2 + K$ Substitute in equation (iii) $v = 3x^2 + 6yx - 3x^2 + K$ v = 6yx + K

 \Rightarrow

(b) Result, Rank $(A^T A)$ = Rank (A)

27. (a)

26.

$$V = \int_{0}^{2\pi} \int_{0}^{\pi/3} \int_{0}^{1} r^{2} \sin\phi \cdot dr \cdot d\phi \cdot d\theta = \int_{0}^{2\pi} \int_{0}^{\pi/3} \left[\frac{r^{3}}{3} \right]_{0}^{1} \sin\phi \, d\phi \, d\theta$$
$$= \frac{1}{3} \int_{0}^{2\pi} [-\cos\phi]_{0}^{\pi/3} d\theta = \frac{1}{3} \times \frac{1}{2} \times \int_{0}^{2\pi} d\theta = \frac{1}{3} \times \frac{1}{2} \times 2\pi = \frac{\pi}{3}$$

From (i) we have,

 \Rightarrow

i.e.

 \Rightarrow

 \Rightarrow

28. (c)

$$I = \int_{1}^{3} \frac{1}{x} dx = \frac{1}{x}$$

$$I = \int_{1}^{3} \frac{1}{x} dx = 2 = \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{3}$$

$$I = \frac{h}{3} (f_{o} + 4f_{1} + f_{2}) = \frac{1}{3} (1 + 4 \times \frac{1}{2} \times \frac{1}{3}) = 1.111$$

29. (d)

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$
Given that,

$$F(s) = \left[\frac{3s+1}{s^3 + 4s^2 + (K-3)s}\right]$$

$$\lim_{t \to \infty} f(t) = 1$$

$$\implies \qquad \lim_{s \to 0} s\left[\frac{3s+1}{s^3 + 4s^2 + (K-3)s}\right] = 1$$

$$\implies \qquad \lim_{s \to 0} \left[\frac{3s+1}{s^2 + 4s + (K-3)}\right] = 1$$

$$\implies \qquad \frac{1}{K-3} = 1$$

$$\implies \qquad K-3 = 1$$

$$\implies \qquad K=4$$

30. (b)

The augmented matrix for the given system is $\begin{bmatrix} 2 & 1 & -4 & | \alpha \\ 4 & 3 & -12 & 5 \\ 1 & 2 & -8 & 7 \end{bmatrix}$.

Performing Gauss-Elimination on the above matrix

$$\begin{bmatrix} 2 & 1 & -4 & | & \alpha \\ 4 & 3 & -12 & | & 5 \\ 1 & 2 & -8 & | & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 2 & 1 & -4 & | & \alpha \\ 0 & 1 & -4 & | & 5 - 2\alpha \\ 0 & 3/2 & -6 & | & 7 - \alpha/2 \end{bmatrix}$$
$$\xrightarrow{R_3 - 3/2R_2} \begin{bmatrix} 2 & 1 & -4 & | & \alpha \\ 0 & 1 & -4 & | & 5 - 2\alpha \\ 0 & 1 & -4 & | & 5 - 2\alpha \\ 0 & 0 & 0 & | & \frac{5\alpha - 1}{2} \end{bmatrix}$$

Now for infinite solution it is necessary that at least one row must be completely zero.

$$\therefore \quad \frac{5\alpha-1}{2} = 0$$

 α = 1/5 is the solution

 \therefore There is only one value of α for which infinite solution exists.