S.No.: 09 GH_ME_F_260919

Engineering Mechanics

MADE ERSY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

MECHANICAL ENGINEERING

Date of Test: 26/09/2019

ANSWER KEY		>	Engineering Mechanics						
1.	(d)	7.	(a)	13.	(d)	19.	(c)	25.	(d)
2.	(a)	8.	(b)	14.	(b)	20.	(b)	26.	(d)
3.	(b)	9.	(a)	15.	(c)	21.	(c)	27.	(d)
4.	(b)	10.	(a)	16.	(b)	22.	(a)	28.	(b)
5.	(b)	11.	(a)	17.	(c)	23.	(a)	29.	(a)
6.	(b)	12.	(a)	18.	(b)	24.	(a)	30.	(a)

DETAILED EXPLANATIONS

1. (d)

Given: Mass of elevator = 500 kg

Mass of operator = 100 kg

Upward acceleration = 3 m/s^2

Total tension in the cable of the elevator = $(m_1 + m_2)(g + a)$

$$= (500 + 100)(10 + 3) = 600 \times 13$$

Total tension in the cable of the elevator = 7800 N = 7.8 kN

2. (a)

Given: Velocity of first particle, $u_1 = 10 \text{ m/s}$

Angle of projection for first particle, $\alpha_1 = 60^{\circ}$

Angle of projection for second particle, $\alpha_2 = 30^{\circ}$

Velocity of second particle, $u_2 = ?$

Given, Time of flight is same.

$$\begin{aligned} t_1 &= t_2 \\ \frac{2u_1 \sin \alpha_1}{g} &= \left(\frac{2u_2 \sin \alpha_2}{g}\right) \\ u_2 &= \frac{10 \times \sin 60^{\circ}}{(\sin 30^{\circ})} = \frac{10 \times \frac{\sqrt{3}}{2}}{\frac{1}{2}} = 10 \times \sqrt{3} \\ u_2 &= 17.32 \text{ m/s} \end{aligned}$$

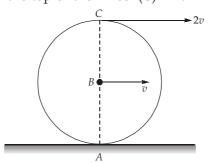
3. (b)

Given: Velocity, $v = 54 \text{ kmph} = (54) \times \frac{5}{18} = 15 \text{ m/s}$

Diameter, $d = 1 \,\mathrm{m}$

Radius, r = 0.5 m

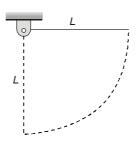
(i) Velocity of the top of the wheel relative to the person sitting in the carriage: We know that the velocity of the top of the wheel (C) = $2v = 2 \times 15 = 30$ m/s



Velocity of the person sitting in the carriage, v = 15 m/s

Velocity of the top of the wheel relative to the person sitting in the carriage = 30 - 15 = 15 m/s

4. (b)



Applying conservation of energy,

$$mgL = \frac{mgL}{2} + \frac{1}{2}I\omega^{2}$$

$$\Rightarrow I\omega^{2} = mgL$$

$$\Rightarrow \frac{mL^{2}}{3}\omega^{2} = mgL \quad [\text{The moment of inertia about the end of the rod is } \frac{mL^{2}}{3}]$$

$$\therefore \qquad \omega = \sqrt{\frac{3g}{L}}$$

5. (b)

Using conservation of energy,

$$mgh = \frac{1}{2}kx^{2}$$

$$\Rightarrow \qquad x = \sqrt{\frac{2mgh}{k}} = \sqrt{\frac{2 \times 0.04 \times 9.81 \times 4.9}{400}}$$

$$\therefore \qquad x = 0.098 \text{ m} = 9.8 \text{ cm}$$

6. (b)

Work done,
$$dW = F \cdot dx = (10 + 0.5 \ln x) dx$$

Thus,
$$\int_{0}^{W} dW = \int_{2}^{4} (10 + 0.5 \ln x) dx$$

$$W = 10(4 - 2) + 0.5 \int_{2}^{4} \ln x dx$$

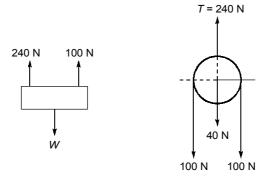
$$W = 20 + 0.5 (x \ln x - x)_{2}^{4}$$

$$W = 20 + 0.5 (4 \ln 4 - 4 - 2 \ln 2 + 2)$$

$$W = 21.079 \text{ J}$$

7. (a)

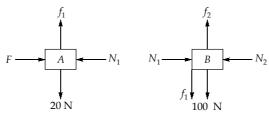
The FBD of the weight W is



So, 240 + 100 = W (240 N includes weight of pulley and tension carried by rope) W = 340 N

8. (b)

The FBD of blocks A and B are,



So,
$$f_1 = 20 \text{ N}$$

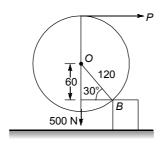
 $f_2(\text{friction on } B \text{ due to wall}) = 100 + f_1 = 120 \text{ N}$

9. (a)

Given:
$$\vec{F} = 10\hat{i} + 5\hat{j} + \hat{k} (N)$$

$$x = \sqrt{106} \text{ m}$$
Now, $\vec{A} \times \vec{B} = (3\hat{i} + 4\hat{j}) \times (3\hat{j} + \hat{k}) = 4\hat{i} - 3\hat{j} + 9\hat{k}$
Now, $W = \left[(10\hat{i} + 5\hat{j} + \hat{k}) \times \sqrt{106} \right] \cdot \frac{(4\hat{i} - 3\hat{j} + 9\hat{k})}{\sqrt{4^2 + 3^2 + 9^2}}$
or $W = 40 - 15 + 9$
 $W = 34 \text{ Nm}$

10. (a)



Taking moment about B,

$$P \times (60 + 120) = 500 \times 120\cos 30^{\circ}$$

 $P = 288.68 \text{ N}$

11. (a)

:.

Given: Mass of first ball = m kgMass of second ball = 2m kgInitial velocity of first mass= u m/s

Initial velocity of second mass = $\frac{u}{7}$ m/s

Coefficient of restitution, e = 0.75

Let, Velocity of the first ball after impact = v_1 m/s Velocity of the second ball after impact = v_2 m/s By momentum conservation,

$$\begin{split} m_1 u_1 + m_2 u_2 &= m_1 v_1 + m_2 v_2 \\ m u + 2 m \times \frac{u}{7} &= m v_1 + 2 m v_2 \\ \frac{9 u}{7} &= (v_1 + 2 v_2) \end{split} \qquad ...(i)$$

We also know that, $(v_2 - v_1) = e(u_1 - u_2)$

$$(v_2 - v_1) = 0.75 \left(u - \frac{u}{7}\right)$$

$$v_2 - v_1 = \frac{9u}{14}$$
 ...(ii)

Multiplying equation (ii) by 2,

$$2v_2 - 2v_1 = \frac{9u}{7}$$
 ...(iii)

$$v_1 + 2v_2 = \frac{9u}{7}$$
 from eq.(i)

By equation (iii) -(i), $v_1 = 0$ m/s

12. (a)

Given:Speed, u = 25 m/s; diameter, d = 50 cm = 0.5 m; Radius, r = 0.25 m

We know that,

$$v^2 = u^2 + 2as$$

 $0 = (25)^2 + 2 \times a \times (25)$
 $a = \frac{-625}{50} = -12.5 \text{ m/s}^2$

[Here minus sign represents retardation]

Angular retardation of the wheel,

$$\alpha = \frac{a}{r} = \frac{-12.5}{0.25} = -50 \text{ rad/s}^2$$

[Minus sign indicates retardation]

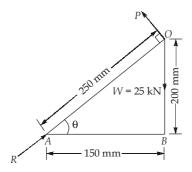
$$\alpha = 50 \text{ rad/s}^2 \text{ (Retardation)}$$

13. (d)

Given, Diameter of wheel = 500 mm, weight of wheel = 25 kN For the least pull, force P must be normal to the line AO.

$$AB = \sqrt{(OA)^2 - (OB)^2} = \sqrt{(250)^2 - (200)^2}$$

 $AB = 150 \text{ mm}$



Taking moment about *A*,

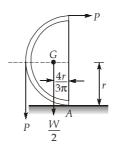
$$P \times 250 = W \times 150$$

$$P = \frac{25 \times 150}{250}$$

$$P = 15 \text{ kN}$$

14. (b)

Taking one halve of cylinder. Centre of gravity of a semicircle is at a distance of $\frac{4r}{3\pi}$ from centre.

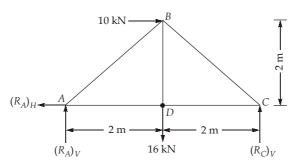


Taking moment about A,

$$P \times 2r = P \times r + \left(\frac{W}{2}\right) \times \left(\frac{4r}{3\pi}\right)$$
$$P \times r = W\left(\frac{2r}{3\pi}\right)$$
$$P = \frac{2W}{3\pi}$$

15. (c)

Let, R_A and R_C are the support reactions at A and C respectively. Support C is a roller support so there will be only vertical reaction at C.



$$\Sigma F_x = 0$$

$$(R_A)_H = 10 \text{ kN (}\leftarrow\text{)}$$

Now, Taking moment about *A*,

$$(R_C)_V \times 4 = (16 \times 2) + (10 \times 2) = 52$$

$$\Rightarrow \qquad (R_C)_V = 13 \text{ kN}$$
Now,
$$\Sigma F_y = 0$$

$$\Rightarrow \qquad (R_A)_V + (R_C)_V = 16$$

$$\Rightarrow \qquad (R_A)_V = 16 - 13 = 3 \text{ kN}$$

Reaction at A,
$$R_A = \sqrt{(R_A)_H^2 + (R_A)_V^2} = \sqrt{10^2 + 3^2} = 10.44 \text{ kN}$$

16. (b)

Assume, Initial angular velocity = ω_0

Angular acceleration = α

Condition I:

Angular velocity after 4 sec = ω

$$\omega = \omega_0 + (\alpha t)$$

$$\omega = \omega_0 + 4\alpha \qquad ...(i)$$

We know that,

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$100 = (4\omega_0) + \frac{1}{2} \times \alpha \times 4^2$$

$$100 = 4\omega_0 + 8\alpha \qquad ...(ii)$$

Condition II:

$$\theta = \omega \times t \qquad \{\because \alpha = 0 \text{ in } 2^{\text{nd}} \text{ case}\}$$

$$80 = (\omega_0 + 4\alpha) \times 4$$

$$20 = \omega_0 + 4\alpha \qquad ...(iii)$$
by (2), $40 = 2\omega_0 + 8\alpha \qquad ...(iv)$

Multiply equation (iii) by (2), $40 = 2\omega_0 + 8\alpha$

By equation (ii) - equation (iv),

$$(100 - 40) = (4\omega_0 + 8\alpha) - (2\omega_0 + 8\alpha)$$

$$60 = 2\omega_0$$

Initial angular velocity, $\omega_0 = 30 \text{ rad/s}$

17. (c)

Given:

Mass,
$$m = 80000 \text{ kg}$$
,
Resistance = 2% of $(80000 \times 10)\text{N}$
= $\frac{2 \times 80000 \times 10}{100} = 16000 \text{ N} = 16 \text{ kN}$

Available force = Tractive force - Resistance
=
$$(26 - 16) = 10 \text{ kN}$$

Acceleration of train =
$$\frac{\text{Available force}}{\text{mass}} = \frac{10 \times 10^3}{80 \times 10^3} = \frac{1}{8} \text{ m/s}^2$$

Final velocity of the train, v = 10 m/s

$$\therefore \qquad v = u + at$$

$$10 = 0 + \left(\frac{1}{8} \times t\right)$$
$$t = 80 \text{ s}$$

18. (b)

Given: $a = \frac{5}{v+3}$, where 'v' is velocity and 's' is distance.

We know that,

$$v\frac{dv}{ds} = a$$

$$\frac{vdv}{ds} = \left(\frac{5}{v+3}\right)$$
$$v(v+3)dv = 5ds$$

Integrating on both sides,

$$\left(\frac{v^3}{3} + \frac{3v^2}{2}\right) = 5s + c_1$$

:. at,
$$t = 0$$
, $s = 0$ and $v = 0$

$$\therefore 0 + 0 = 0 + c_1$$

$$c_1 = 0$$

Now,
$$\frac{v^3}{3} + \frac{3v^2}{2} = 5s$$

at,
$$v = 30 \text{ m/s}$$

$$\frac{(30)^3}{3} + \frac{3(30)^2}{2} = 5s$$

$$\frac{(30)^3}{3} + \frac{3 \times 30^2}{2} = 5s$$

$$9000 + 1350 = 5s$$

$$s = \frac{10350}{5}$$

$$s = 2070 \,\mathrm{m}$$

19. (c)

Given: m_A = 15 kg, m_B = 10 kg

For mass B, $m_B g - T = m_B a$

$$10g - T = 10 a$$
 ...(i)

For mass A,

$$T = m_A a$$

$$T = 15 a$$
 ...(ii)

Addition equation (i) and (ii)

$$(10g - T) + (T) = (15 + 10)a$$

$$a = \frac{10g}{25} = \frac{10 \times 10}{25} = 4 \text{ m/s}^2$$

Acceleration, $a = 4 \text{ m/s}^2$

20. (b)

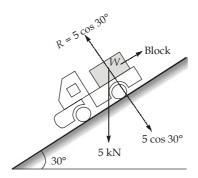
Given: Angle of inclination, $\alpha = 30^\circ$; Deceleration, $a = 1 \text{ m/s}^2$; Weight of block, W = 5 kN Coefficient of friction, $\mu = 0.3$

 \therefore As truck is decelerated, the load will tend to slip forward (i.e. downward) Force due to deceleration, $F_1 = m \cdot a$

$$= \left(\frac{5 \times 10^3}{10}\right) \times 1 = 500 \text{ N}$$

Component of the load along the plane,

$$F_2 = W \sin \theta = (5 \text{ kN}) \sin 30^\circ = 2.5 \text{ kN}$$



:. Total force that will cause slipping:

$$F_{\text{net}} = F_1 + F_2 = 0.5 + 2.5 = 3.0 \text{ kN}$$

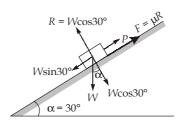
Force of friction = $\mu W \cos \theta = 0.3 \times 5 \times \cos 30^\circ$
= $1.5 \times 0.866 \text{ kN} = 1.30 \text{ kN}$

Factor of safety =
$$\frac{\text{Force of friction}}{\text{Force causing slipping}} = \frac{1.30}{3.00} = 0.433$$

21. (c)

Given: Weight of body, W = 1000 N

Angle of plane of inclination, $\alpha = 30^{\circ}$, Angle of friction, $\phi = 15^{\circ}$



For minimum value of *P*, the body will be at the point of sliding downwards. In this condition, friction force will act in upward direction parallel to the plane.

Let, F and R are friction force and normal reactions respectively.

In equilibrium condition, $W\sin 30^\circ = P + \mu R$

$$P = W\sin 30^{\circ} - \mu W\cos 30^{\circ}$$

[:: $\mu = \tan \phi = \tan 15^\circ$]

=
$$W\left[0.5 - 0.268 \times \frac{\sqrt{3}}{2}\right]$$
 = $W[0.5 - 0.268 \times 0.866]$
= 1000×0.268

Minimum force required for equilibrium, P = 268 N

Alternate:

$$P_{\min} = W \frac{\sin(\alpha - \phi)}{\cos \phi}$$
$$= 1000 \times \frac{\sin(30 - 15)^{\circ}}{\cos 15^{\circ}} = 1000 \times \tan 15^{\circ}$$
$$P_{\min} = 268 \text{ N}$$

22. (a

Given: P = 250 N; $BF_1 = 25 \text{ mm}$; $F_1A = 325 \text{ mm}$; CD = 360 mm; $DF_2 = 40 \text{ mm}$

Leverage of the upper lever, $AB = \frac{AF_1}{BF_1} = \frac{325}{25} = 13$

Leverage of the lower lever, $CF_2 = \frac{CF_2}{DF_2} = \frac{360 + 40}{40} = 10$

Total leverage of the compound lever = $13 \times 10 = 130$

We know that, Total leverage = $\frac{W}{P} = \frac{W}{250}$

$$130 = \frac{W}{250}$$

$$W = 130 \times 250 = 32500 \text{ N} = 32.5 \text{ kN}$$

23. (a)

MOI of triangle about base AB,

$$I_1 = \frac{1}{12} \times (2r) \times (2r)^3 = \left(\frac{16}{12}\right) r^4$$

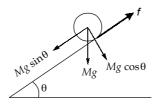
MOI of semi-circle about diameter, $I_2 = \left(\frac{1}{2}\right) \times \left(\frac{\pi}{64}\right) \times (2r)^4 = \left(\frac{\pi}{8}\right) r^4$

MOI of smaller circle about diameter, $I_3 = \left(\frac{\pi}{64}\right) r^4$

MOI of whole section about AB axis, $I = I_1 + I_2 - I_3$

$$= \left(\frac{4}{3} + \frac{\pi}{8} - \frac{\pi}{64}\right)r^4 = \left(\frac{4}{3} + \frac{7\pi}{64}\right)r^4 = \left(\frac{4}{3} + \frac{22}{64}\right)r^4 = 1.677 \ r^4$$

24. (a)



Let the friction force be 'f'

So, $Mg\sin\theta - f = Ma$

$$f = Mg\sin\theta - Ma$$

and

$$fR = I\alpha = I\frac{a}{R}$$

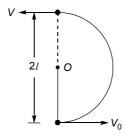
$$f = \frac{Ia}{R^2}$$

$$\frac{Ia}{R^2} = Mg\sin\theta - Ma$$

$$a = \frac{g \sin \theta}{\left(1 + \frac{I}{MR^2}\right)}$$

25. (d)

Let the bob is given horizontal speed V_0 at the bottom.



By energy conservation,

So,
$$\frac{1}{2}mV_0^2 = \frac{1}{2}mV^2 + mg \times (2l)$$
or,
$$mV^2 = mV_0^2 - 4 mgl \qquad ...(1)$$

Also, at the top most point, force balance is,

$$mg + T = \frac{mV^2}{l}$$

$$mV^2 = mgl + Tl$$

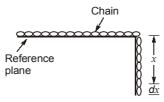
$$mV_0^2 = 5 \text{ mg}l + Tl \qquad \text{(using (1))}$$

or

For minimum V_0 , T should be zero

$$\therefore V_0 = \sqrt{5gl}$$

26. (d)



The potential energy of $\frac{1}{3}$ of the chain that overhangs is

$$u_1 = \int_0^{l/3} -\frac{mgx}{l} dx = \frac{-mgl}{18}$$

The potential energy of the full chain when it completely slips off the table is

$$u_2 = \int_0^l -\frac{mgx}{l} dx = \frac{-mgl}{2}$$

The loss in
$$PE = \frac{-mgl}{18} - \left(\frac{-mgl}{2}\right) = \frac{4mgl}{9}$$

This should be equal to gain in kinetic energy, but the initial kE is zero. Hence this is the kE when the chain completely falls off the table.

27. (d)

Using conservation of angular momentum,

$$MR^{2}\omega = \left(MR^{2} \times \frac{8\omega}{9}\right) + \left(\frac{M}{8} \times \frac{9R^{2}}{25} \times \frac{8\omega}{9}\right) + \left(\frac{M}{8} \times x^{2} \times \frac{8\omega}{9}\right)$$
$$x = \frac{4R}{5}$$

:.

Now,
$$\Sigma F_x = 0$$

$$R_{B2} = P$$
and,
$$\Sigma F_y = 0$$

$$R_D = R_{B1}$$
Also,
$$\Sigma M_B = 0$$

$$R_D \times 2a = P \times \frac{a}{2}$$

$$R_D = R_{B1} = \frac{P}{4}$$

Analysis of joint B,

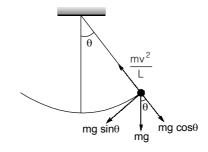
So,
$$F_{AB} \sin 45^{\circ} = \frac{P}{4}$$

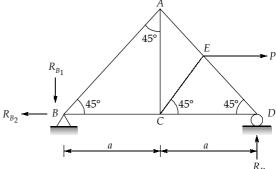
$$\Rightarrow \qquad F_{AB} = \frac{\sqrt{2}P}{4}$$
Also,
$$P = F_{BC} + F_{AB} \cos 45^{\circ}$$

$$\Rightarrow \qquad F_{BC} = P - F_{AB} \cos 45^{\circ} = P - \frac{\sqrt{2}P}{4} \times \frac{1}{\sqrt{2}} = \frac{3P}{4}$$
Hence,
$$F_{BC} = 0.75 P$$

29. (a)

Hence,

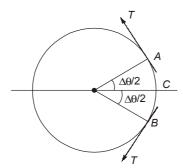




$$\Rightarrow T - mg \cos\theta = \frac{mv^2}{L}$$

$$\Rightarrow T = m\left(g\cos\theta + \frac{v^2}{L}\right)$$

30. (a)



Consider a small part ACB of the ring that subtends an angle $\Delta\theta$ at the centre. Let *T* be tension in the ring.

 Δm be the mass of small element.

$$\Rightarrow \qquad 2T \sin \frac{\Delta \theta}{2} = \Delta m \left(\frac{v^2}{r} \right) \qquad \dots (1)$$

Length of arc ACB is $R\Delta\theta$.

Now,
$$\Delta m = \frac{M}{2\pi R} \times R\Delta\theta = \frac{M\Delta\theta}{2\pi}$$

$$\Rightarrow 2T \sin\frac{\Delta\theta}{2} = \frac{M\Delta\theta}{2\pi} \times \frac{v^2}{R}$$

$$\Rightarrow T = M \times \frac{v^2}{2\pi R} \times \frac{\Delta\theta/2}{\sin(\Delta\theta/2)} = \frac{Mv^2}{2\pi R}$$
 [:: for small angle, $\sin\frac{\theta}{2} = \frac{\theta}{2}$]

www.madeeasy.in