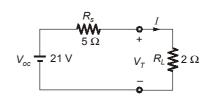
CLASS TEST							S.No. : 04 LS1_EE_T_210919 Network Theory		
Delhi		 Hyd	ndia's Be: Ierabad .	DE st Institute Jaipur Luck	e for II (now	ERS, GATE & P Indore Pune adeeasy.in P	3Us Bhuba	neswar Kolkata Patna 5124612	
CLASS TEST 2019-2020 ELECTRICAL ENGINEERING									
Date of Test : 2									
AN	SWER KEY	>	Netw	ork Theo	ory				
1.	(b)	7.	(c)	13.	(a)	19.	(d)	25. (c)	
2.	(d)	8.	(c)	14.	(d)	20.	(c)	26. (a)	
3.	(b)	9.	(c)	15.	(c)	21.	(c)	27. (c)	
4.	(d)	10.	(b)	16.	(a)	22.	(b)	28. (b)	
5.	(d)	11.	(b)	17.	(a)	23.	(d)	29. (c)	
6.	(a)	12.	(d)	18.	(c)	24.	(d)	30. (b)	


DETAILED EXPLANATIONS

1. (b)

The internal resistance will be in series with the load.

: Circuit current will be

$$I = \frac{21}{7} = 3 \text{ A}$$

Terminal voltage =
$$I \times R_L = 3 \times 2 = 6 \text{ V}$$

2. (d)

By inspection, $i = \frac{15}{4} = 3.75 \text{ A}$

and the current through 3 Ω resistor is,

$$i' = \frac{15}{3} = 5 \text{ A}$$

$$i_{s} \qquad (1)$$

$$i_{s} \qquad (1)$$

$$i_{s} \qquad (1)$$

$$i_{s} \qquad (1)$$

$$i'_{s} \qquad (1)$$

Applying KCL at node (1), we get,

$$+\alpha i = i + i'$$
$$\alpha = 1 + \frac{i'}{i} - \frac{i_s}{i}$$

As i_s can't be determined with the given data, α also can't be determined.

i_s

3. (b)

Here.

...

$$\omega_0 = \frac{1}{\sqrt{L_{eq}C}}$$

 $L_{eq} = L_1 + L_2 - 2M = 1 + 5 - 4 = 2 H$
 $C = 2 F$

$$\omega_0 = \frac{1}{\sqrt{2 \times 2}} = \frac{1}{2} = 0.5 \text{ rad/sec}$$

4. (d)

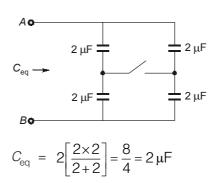
Bandwidth = $\frac{\text{Resonant frequency}}{\text{Quality factor}}$ For parallel RLC circuit, $Q = R \sqrt{\frac{C}{L}}$ and $\omega_0 = \frac{1}{\sqrt{LC}}$.:.

$$BW = \frac{1\sqrt{L}}{R\sqrt{LC} \times \sqrt{C}}$$
$$BW = \frac{1}{RC} \Rightarrow BW \text{ is independent of } L$$

5. (d)

Given graph is a complete graph

: the maximum number of possible trees = n^{n-2}


where n = total number of nodes

∵ *n* = 4


Total number of trees = $4^{(4-2)} = 4^2 = 16$

6. (a)

When the switch was opened

When the switch get closed

$$C'_{eq} = \frac{4 \,\mu\text{F} \times 4 \,\mu\text{F}}{8 \,\mu\text{F}} = \frac{16}{8} = 2 \,\mu\text{F}$$

7. (c)

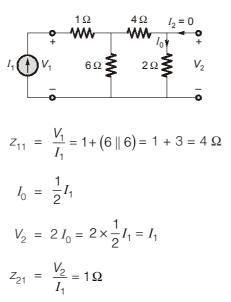
Net equivalent resistance

$$R_{eq} = 20 + [40 || \{20 + 40 || 40\}] = 20 + 20 = 40 \Omega$$

Current = $\frac{V}{R_{eq}} = \frac{12}{40}$ A
Power, $P = VI = \frac{V^2}{R_{eq}} = \frac{12^2}{40} = 3.6$ W

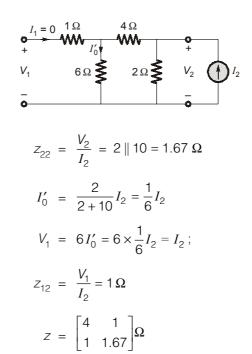
8. (c)

For series RLC circuit, *Q*-factor is given by


$$Q = \frac{1}{R}\sqrt{\frac{L}{C}} = \frac{1}{25}\sqrt{\frac{100 \times 10^{-6}}{100 \times 10^{-12}}} = \frac{1000}{25} = 40$$

CT-2019 | EE • Network Theory 9

9. (c)


India's Best Institute for IES, GATE & PSUs

To get z_{11} and z_{21} , consider circuit as shown below

•.•

To get $z_{\rm 22}$ and $z_{\rm 21}$, consider the circuit as below,

•_•

.

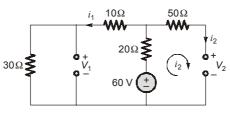
Therefore

Hence,

10. (b)

Total charge passed through the point is

$$q = \int_{0}^{t} i \, dt = \int_{0}^{1} 10t \, dt + \int_{1}^{2} 10 \, dt$$
$$= 10 \left[\frac{t^{2}}{2} \right]_{0}^{1} + 10 [t]_{1}^{2} = 10 \left[\frac{1}{2} \right] + 10 [2 - 1] = 15 \, \mu\text{C}$$



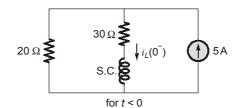
11. (b)

$$V(t) = \frac{5di}{dt} = \frac{5d}{dt} [3e^{-2t}] = -30 \ e^{-2t} \text{ Volts}$$

Power, P = Vi = (-30 \ e^{-2t}) × 3e^{-2t}
= -90 \ e^{-4t} \text{ W}

12. (d)

Under dc conditions, the circuit becomes as shown below,



From circuit;

and

$$i_1 = \frac{60}{10 + 20 + 30}$$

 $i_1 = 1 A$
 \therefore
 $V_1 = 30 i_1 = 30 V$
and
 $V_2 = 60 - 20 i_1 = 40 V$

13. (a)

For t < 0; 50 u(t) source gives $0(i_1)$ current, but 5 A current source gives;

 $i_2 = 0$

$$\begin{split} i_{L}(0^{-}) &= \ \frac{5\times 20}{20+30} \\ i_{L}(0^{-}) &= \ 2 \ \mathrm{A} \\ \mathrm{At} \ t = 0^{+}, \\ \mathrm{Hence}, \qquad \qquad i_{L}(0^{+}) &= \ i_{L}(0^{-}) \\ i_{L}(0^{+}) &= \ 2 \ \mathrm{A} \end{split}$$

14. (d)

For maximum power transfer from the circuit of N to N_L , $R_{\rm Th}$ across the terminals should be 100 Ω . Hence the voltage v should be

 $v = \frac{1}{2} \times 20 = 10 \text{ V}$

Now,

$$i = \frac{V}{R_{th}} = \frac{10}{100} = 0.1 \text{ A}$$

Applying KCL at top terminal of N_L we get,

or

$$0.1 = \frac{10}{200} + \frac{10 - v_a}{50}$$

$$0.1 = 0.05 + \frac{10 - v_a}{50}$$

$$10 - v_a = 0.05 \times 50$$

$$v_a = 10 - 2.5 = 7.5 \text{ V}$$
15. (c)
Given;
and

$$V_R = 31.6 \text{ V}$$

$$R = 5 \Omega$$

$$\therefore$$

$$I_{eff} = \frac{V_R}{R} = \frac{31.6}{5} = 6.32 \text{ A}$$

$$R = I^2_{eff} \times R = (6.32)^2 \times 5 \approx 200 \text{ W}$$

$$Q = I^2_{eff} \times X_L = (6.32)^2 \times 15 \approx 600 \text{ W}$$

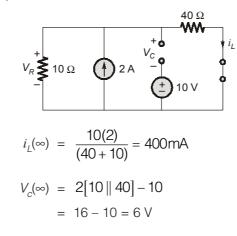
$$S = (200 + i600) \text{ VA}$$

16. (a)

For the given circuit, the impedance at resonance is given by

$$Z = \frac{L}{RC}$$
$$Z = \frac{150 \times 10^{-6}}{15 \times 750 \times 10^{-12}} = \frac{10^{6}}{75}$$

Therefore,

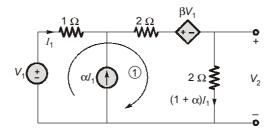

MADE EASY

Institute for IES, GATE & PSUs

$$Z|_{\text{at resonance}} = 13.3 \text{ k}\Omega$$

17. (a)

As $t \rightarrow \infty$, we end up with the equivalent circuit shown below



18. (c)

Using the dot polarities given in figure, For coil 1 : $L_1 - M_{12} - M_{13} = 4 - 1 - 3 = 0 = L_{eq1}$ For coil 2 : $L_2 - M_{12} + M_{23} = 5 - 1 + 2 = 6 = L_{eq2}$ For coil 3 : $L_3 - M_{13} + M_{23} = 6 - 3 + 2 = 5 = L_{eq3}$ Effective inductance $= L_{eq1} + L_{eq2} + L_{eq3} = 0 + 6 + 5 = 11 \text{ H}$

20. (c)

In loop (1), by applying KVL, we get,

or

$$V_{1} = I_{1} + 2(1 + \alpha)I_{1} + \beta V_{1} + 2(1 + \alpha)I_{1}$$

$$(1 - \beta)V_{1} = (5 + 4\alpha)I_{1}$$

$$V_{1} = \frac{(5 + 4\alpha)}{(1 - \beta)}I_{1}$$

Also

Also,

$$V_2 = (1 + \alpha)I_1 \times 2 = 2(1 + \alpha)I_1$$

$$\cdots$$

$$\frac{V_2}{V_2} = \frac{2(1 + \alpha)(1 - \beta)}{1 + \alpha}$$

::
$$\frac{V_2}{V_1} = \frac{2(1+\alpha)(1-\alpha)}{(5+4\alpha)}$$

$$\alpha = -\frac{3}{2} \Rightarrow 4\alpha = -6$$
So,

$$\frac{V_2}{V_1} = \frac{2\left(1-\frac{3}{2}\right)}{(5-6)}(1-\beta) = (1-\beta)$$

$$\therefore \qquad (1-\beta) = -\frac{1}{2}$$
or

$$\beta = \frac{1}{2}+1=\frac{3}{2}$$

21. (c)

But,

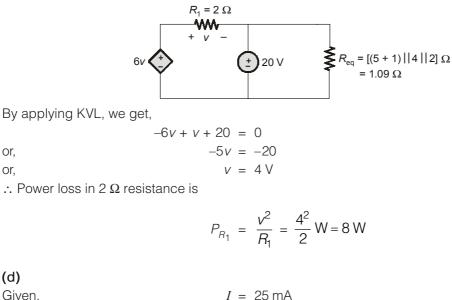
...

Energy,
$$E = \int_{-\infty}^{t} v(t) \cdot i(t) dt$$

$$i(t) = \frac{dq}{dt} \quad \text{or} \quad i(t) dt = dq$$

$$E = \int_{-\infty}^{t} v(t) dq = \int_{1}^{3} (1 + 2q + 3q^{2}) dq = \left[q + \frac{2q^{2}}{2} + \frac{3q^{3}}{3} \right]_{1}^{3}$$

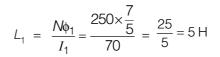
$$= \left[(3 - 1) + (3^{2} - 1^{2}) + (3^{3} - 1^{3}) \right]$$


$$= 2 + (9 - 1) + (27 - 1) = 2 + 8 + 26 = 36 \text{ J}$$

dq

22. (b)

The given circuit can be reduced as


23. (d)

or,

or,

Given, $I = 25 \, \text{mA}$ $I_{\rm sc} = 50 \,\mathrm{mA}$ $V = 0.5 \,\mathrm{V}$ R_{eq} V (†) I_{sc} R $I = \frac{R_{eq}}{R + R_{eq}} \times I_{SC}$ *:*.. $25 = \frac{R_{eq}}{R + R_{eq}} \times 50$ $\frac{50}{25} - 1 = \frac{R}{R_{eq}}$ or $R_{eq} = R$ $V = I \times R$ or •.• $0.5 V = 25 mA \times R$ $R = \frac{0.5}{25} \,\mathrm{k}\Omega = 20\,\,\Omega$ or $R_{\rm eq}$ = 20 Ω *.*.. 24. (d) ϕ_1 = primary coil flux Let ϕ_{12} = mutual flux $\phi_{12} = K\phi_1 = 0.5 \times \phi_1 = 0.7$ where $\phi_1 = \frac{0.7}{0.5} = \frac{7}{5} = 1.4 \text{ Wb}$ *.*..

:. The primary coil inductance,

25. (c)

Under resonance,

Under resonance, $X_L = X_C$ \therefore The current flowing through the inductor is equal to the current flowing through the capacitor.

$$\therefore \qquad I = \frac{V}{X_L} = \frac{V}{2\pi f L}$$

:..

$$f = \frac{1}{2\pi\sqrt{LC}}$$
$$I = \frac{V \times 2\pi\sqrt{LC}}{2\pi L} = V \cdot \sqrt{\frac{C}{L}}$$

$$I = \frac{\sqrt{2\pi \sqrt{2}}}{2\pi L}$$

26. (a)

Let, v be the reference vector, it is clearly observed from the question that, i lags v by 30° .

Also,

$$\frac{V_m}{I_m} = \frac{18}{2} = 9 \Omega$$

$$\therefore \qquad Z = \sqrt{R^2 + (\omega L)^2}$$

$$9^2 = R^2 + (\omega L)^2 \qquad \dots(i)$$

$$\cdots \qquad \frac{\omega L}{R} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

$$\therefore \qquad R = \sqrt{3} (\omega L) \qquad \dots(ii)$$
From equation (i) and (ii),

$$9^2 = (\sqrt{3} \omega L)^2 + (\omega L)^2$$

$$2(\omega L) = 9$$

$$L = \frac{9}{2 \times \omega} = \frac{9}{2 \times 9} = 0.5 \, \text{H} \qquad \because \omega = 9 \, \text{rad/sec}$$

27. (c)

The internal impedance of the circuit is

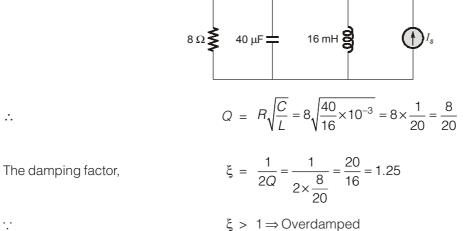
$$Z_{\rm in} \; = \; 3 + j 4 - 8 j = (3 - 4 j) \; \Omega$$
 The open circuit voltage across R_L

$$V_{\rm oc} = 50 \angle 0^{\circ}$$
 Volts

As per the maximum power transfer theorem, for maximum power transfer,

or,
$$R_L = |(3-4j)| = \sqrt{9+16} = 5 \Omega$$

:.
$$|I| = \frac{50 \angle 0^{\circ}}{(3-j4+5)} = \left|\frac{50 \angle 0^{\circ}}{8-j4}\right|$$



$$|I| = \frac{50\angle 0^{\circ}}{\sqrt{64 + 16}} = \frac{50\angle 0^{\circ}}{4\sqrt{5}} A$$
$$P_{\text{max}} = |I|^2 \cdot R_L = \left(\frac{50\angle 0^{\circ}}{4\sqrt{5}}\right)^2 \times 5$$
$$= \frac{50\times 50}{16\times 5} \times 5 = \frac{2500}{16} = 156.25 \text{ W}$$

28. (b)

MADE EASY

By applying source transformation, we come to known that the circuit act as a parallel RLC circuit.

...

29. (c)

The charging current equation for RL circuit is

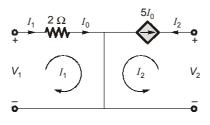
$$i(t) = \frac{V}{R} (1 - e^{-t/\tau}) u(t)$$

$$\tau = \frac{L}{R} = \text{time constant}$$

$$= \frac{2}{20} = 0.1 \text{ sec}$$

$$i = \frac{100}{20} (1 - e^{-t/0.1}) u(t) = 5(1 - e^{-10t}) u(t) \text{ A}$$

where,


:. The rate of change of current at the instant just after closing the switch ($t = 0^+$) is

 $\frac{di}{dt} = 50e^{-10t} u(t) \text{ A/s}$

$$\frac{di}{dt}(t=0^+) = 50 \text{ A/s}$$

30. (b)

By applying KVL in the first loop, we get,

$$V_{1} = I_{1} \times 2 + 0(I_{1} + I_{2})$$

$$V_{1} = 2I_{1} = 2I_{0}$$

$$I_{1} = \frac{V_{1}}{2}$$
...(i)

Also,

$$I_2 = -5I_0 = -\frac{5}{2}V_1$$
 ...(ii)

From equations (i) and (ii),

$$\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{5}{2} & 0 \end{bmatrix} \mho$$
$$= \frac{1}{2} \begin{bmatrix} 1 & 0 \\ -5 & 0 \end{bmatrix} \mho$$