

DETAILED EXPLANATIONS

2. (c)

As code must include all the three letters then pattern of the code word is $A B C X$ where X can be any letter out of A, B, and C. So we can have the code word consisting of letters:
$A B C A$;
ABCB;
ABCC.
We can arrange letters in each of above 3 cases in $\frac{4!}{2!}$ number of ways (as each case has 4 letters out of which one is repeated twice), so total number of code words is $3 \times \frac{4!}{2!}=36$.
3. (d)

Initial solution is "half water/half alcohol mix" means it's 50\% (0.5) alcohol solution.
Let the portion replaced be x and the volume of initial solution be 1 unit.
Then the amount of alcohol after removal of a portion will be $0.5(1-x)$ and the amount of alcohol added will be $0.25 x$, so total amount of alcohol will be $(1-x)+0.25 x$. On the other hand as in the end 30% alcohol solution was obtained then the amount of alcohol in the end was 0.3×1.
So $0.5(1-x)+0.25 x=0.3 \Rightarrow x=0.8$, or 80%.
4. (a)

From figures, we conclude that $2,3,5$ and 6 are adjacent to 1 . Therefore, 4 lies opposite 1 . Hence, when 4 is at the bottom, then 1 must be on the top.
5. (c)

Let the number of children in the lift is x
Now, $\quad \frac{6}{18}+\frac{10}{24}+\frac{x}{32}=1$

$$
\frac{x}{32}=1-\frac{1}{3}-\frac{5}{12}
$$

Maximum number of children that can board the lift $x=\frac{32}{4}=8$ children
6. (a)

$$
\begin{aligned}
l b & =12 \\
b h & =18 \\
l h & =24
\end{aligned}
$$

Multiplying the three equations,

$$
\begin{aligned}
(l b h)^{2} & =12 \times 18 \times 24 \\
& =2 \times 2 \times 3 \times 2 \times 3 \times 3 \times 2 \times 2 \times 2 \times 3 \\
& =(2)^{6} \times(3)^{4} \\
l b h & =(2)^{3} \times(3)^{2} \\
& =8 \times 9=72
\end{aligned}
$$

7. (d)

From the Venn diagram, we can see that only option (d) is possible.
8. (b)

Each person out of 4 has 6 floors (options) to get out of (since no one gets out on the ground floor), hence total ways is $6 \times 6 \times 6 \times 6=6^{4}=1296$.
9. (a)

Since 96% of the 20 kg watermelon is water, 4% of the 20 kg is non-water : (0.04)(20) $=0.8 \mathrm{~kg}$ Since 95% of the post-evaporation watermelon is water, the remaining 5% must be composed of the 0.8 kg of non-water : $0.05 x=0.8$

$$
\Rightarrow \quad x=\frac{0.8}{0.05}=\frac{80}{5}=16 \mathrm{~kg}
$$

10. (b)

$$
\left.\begin{array}{lrl}
& & 2^{x}=4^{y}=8^{z}
\end{array} \begin{array}{rl}
& \Rightarrow 2^{x}=2^{2 y}=2^{3 z} \\
\Rightarrow & x
\end{array}\right)=2 y=3 z=k \text { (say) }
$$

11. (b)

The series will be of the form : 101, 104, 107.....995, 998.
It will have a total of 300 terms $\left(999-100+1=900\right.$. Take $\frac{1}{3}$ of this, since only 1 term is there in every 3)
Now, \quad Sum $=\frac{\left(1^{\text {st }} \text { number }+n^{\text {th }} \text { number }\right) \times n}{2}$

$$
\begin{aligned}
& =\frac{(101+998) \times 300}{2} \\
& =\frac{1099 \times 300}{2} \\
& =164,850
\end{aligned}
$$

12. (d)

There are a total of 18 shirts : 8 blue and 10 non blue.
P (selecting at least 1 blue shirt) $=1-P$ (selecting no blue shirts)
Assuming no replacement
$P($ selecting first non-blue shirt $)=\frac{10}{18}$
$P($ selecting second non-blue shirt $)=\frac{9}{17}$
$P\left(\right.$ selecting no blue shirts) $=\frac{10}{18} \times \frac{9}{17}=\frac{10}{34}$
$\therefore P$ (selecting at least 1 blue shirt) $=1-\left(\frac{10}{34}\right)=\frac{24}{34}=\frac{12}{17}$
13. (a)

$$
\begin{aligned}
\text { Milk } & =m \text { litres; } \\
\text { Water } & =w \text { litres; }
\end{aligned}
$$

Cost of $(m+w)$ litres $=6.4 \mathrm{~m}$;
Selling price of $(m+w)$ litres $=8(m+w)$.
Given that $6.4 m \times 1.375=8(m+w) \Rightarrow \frac{w}{m}=\frac{1}{10}$.
14. (b)

Since the two semi circles are congruent, they intersect at the top of the arc.
We can divide this into 3 regions
I. A quarter circle with radius 2 (Area $=\frac{\pi \times 2 \times 2}{4}=\pi$)
II. A square with side $2($ Area $=2 \times 2=4)$
III. Another quarter circle with radius 2 (Area $=\frac{x \times 2 \times 2}{4}=\pi$)

$$
\begin{array}{rlrl}
\text { Total } & =4 \times 4=16 \\
& & =\text { Shaded Area } & =\text { Total Area }-\mathrm{I}-\mathrm{II}-\mathrm{III} \\
\therefore \quad & \text { Shaded Area } & =16-\pi-4-\pi=12-2 \pi
\end{array}
$$

15. (d)

Let the weight of 24% solution used be x grams, weight of alcohol in it would be $0.24 x$.
As in final solution strength decreased by $\frac{1}{3}$ thus it became $24 \times \frac{2}{3}=16 \%$.
Set the equation : $0.24 x=0.16(x+200)$, the weight of 16% alcohol in $(x+200)$ grams of new solution comes only from (equal to) 24% alcohol in x grams of strong (initial) solution, as there is 0 grams of alcohol in water (0% alcohol solution)

$$
\begin{aligned}
\Rightarrow & 0.08 x & =32 \\
\Rightarrow & x & =400
\end{aligned}
$$

16. (d)

$$
A B=A C=C D \Rightarrow \angle C A D=\angle C D A=20^{\circ}
$$

and

$$
\angle A B C=\angle A C B
$$

In $\triangle A C D$

$$
\begin{aligned}
& \Rightarrow \angle A C D+\angle C A D+\angle C D A=180^{\circ} \\
& \Rightarrow \angle A C D=180^{\circ}-20^{\circ}-20^{\circ}=140^{\circ} \\
& \Rightarrow \angle A C B=180^{\circ}-140^{\circ}=40^{\circ}=\angle A B C
\end{aligned}
$$

Similarly in $\triangle \mathrm{ABC}$

$$
\begin{array}{ll}
\Rightarrow & \angle B A C=180^{\circ}-40^{\circ}-40^{\circ}=100^{\circ} \\
\therefore & \angle B A D=100^{\circ}+20^{\circ}=120^{\circ}
\end{array}
$$

17. (a)

Let radius of in circle $=r \Rightarrow$ Radius of circumcircle $=2 r$
Difference in area $=\pi\left[(2 r)^{2}-(\mathrm{r})^{2}\right]=2156$

$$
\begin{aligned}
\Rightarrow & 3 \times \frac{22}{7} \times r^{2} & =2156 \\
\Rightarrow & r^{2} & =\frac{2156 \times 7}{66} \\
\Rightarrow & r & =\sqrt{\frac{686}{3}}
\end{aligned}
$$

Now, height of equilateral triangle $=3 r=\frac{\sqrt{3}}{2} a$ (where a is side of triangle)

$$
\begin{aligned}
\Rightarrow & \quad 3 \times \sqrt{\frac{686}{3}} & =\frac{\sqrt{3}}{2} a \\
\Rightarrow & a & =2 \sqrt{686} \\
\therefore \quad & \text { Area of triangle } & =\frac{\sqrt{3}}{4} a^{2} \\
& & =\frac{\sqrt{3}}{4} \times 4 \times 686=686 \sqrt{3} \mathrm{~cm}^{2}
\end{aligned}
$$

18. (d)

$$
p^{q}=q^{p}
$$

It has been given that $q=9 p$.
Substituting, we get,

$$
p^{9 p}=(9 p)^{p}
$$

$$
\Rightarrow \quad \begin{aligned}
\left(p^{p}\right)^{9} & =9^{p} \times p^{p} \\
\left(p^{p}\right)^{8} & =9^{p} \\
p^{8 p} & =9^{p}
\end{aligned}
$$

Raising the power to $\frac{1}{p}$ on the both sides, we get,

$$
\begin{aligned}
p^{8} & =9 \\
p & =\sqrt[8]{9}
\end{aligned}
$$

19. (c)

Let $d=$ Total distance
divide each case into 3 segments:

1. first 50 km
2. next 24 km
3. last $d-74 \mathrm{~km}$
let $s=$ Speed of train
for segment 1, in each case, time $=\frac{50}{s}$
for segment 3 , in each case, time $=\frac{d-74}{\left(\frac{3 s}{4}\right)}$
Therefore, segment 2 must account for the 10 minute total time difference between the two cases

$$
\begin{aligned}
\frac{24}{\left(\frac{3 s}{4}\right)}-\frac{24}{s} & =\frac{1}{6} \\
\Rightarrow \quad s & =48 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

20. (a)

Let cost price be c and selling price be s

$$
\begin{aligned}
& s & =1.2 c \\
\Rightarrow & s+1.2 & =1.4 c \\
\Rightarrow & 1.2 c+1.2 & =1.4 \mathrm{c} \\
\Rightarrow & c & =6 \\
\Rightarrow & s & =7.2
\end{aligned}
$$

21. (b)
$A B=54 \mathrm{~cm}$ and $\triangle A N M, \triangle O C P, \triangle O P X$ are equilateral triangles.
$\Rightarrow \quad M N=M R=N O=O P=P Q=Q R=\frac{54}{3}=18 \mathrm{~cm}$
Thus, MNOPQRM is regular hexagon with side 18 cm
$\therefore \quad$ Area of MNOPQRM $=\frac{3 \sqrt{3}}{2}(\text { side })^{2}$

$$
\frac{3 \sqrt{3}}{2}(18)^{2}=486 \sqrt{3} \mathrm{sq} \cdot \mathrm{~cm}
$$

22. (b)

The series is an A.P. with common difference, $d=-66-(-64)=-2$
First term, $a=-64$ and last terms $a_{n}=-100$
$n^{\text {th }}$ term of the series, $a_{n}=a+(n-1) d$

$$
\Rightarrow \quad-100=-64+(n-1)(-2)
$$

$$
\Rightarrow \quad n-1=\frac{-36}{-2}=18
$$

$\Rightarrow \quad n=18+1=19$
$\therefore \quad$ Sum $=\frac{n}{2}\left(a+a_{n}\right)$ $=\frac{19}{2} \times(-64-100)=\frac{19}{2} \times(-164)$ $=19 \times(-82)=-1558$
23. (d)

$$
\text { Total books }=240
$$

I. 80 books at the rate of $₹ x$ per book
II. 78 books at the rate of $₹(x+a)$ per book
III. $[240-(78+80)]=82$ books at the rate of $₹(x-a)$ per book.

Total sale $=₹ 14384$
Now, $80 \times x+78(x+a)+82(x-a)=14384$

$$
240 x-4 a=14384
$$

$$
\begin{equation*}
60 x-a=3596 \tag{1}
\end{equation*}
$$

This equation has two variables and only one equation. So it can be solved by putting option value.
Putting,

$$
\begin{aligned}
x & =60 \\
60 \times 60-a & =3596 \\
a & =4
\end{aligned}
$$

Hence,
Maximum price of book $=60+4=₹ 64 /$ book
Minimum price of book $=60-4=₹ 56 /$ book
Note : Reason behind putting $x=60$ is that in any option a value is not more that 4 . According to that nearest integer value of x should be 60 .
24. (c)

An integer is divisible by 9 if the sum of its digits is divisible by 9 .
Since the sum of first 9 natural number is $\frac{9(9+1)}{2}=45$, which is divisible by 9 , it must be the case that the sum of the two integers that we don't pick to form the seven digit number is divisible by 9 . Number of ways of choosing two integers from 9 integers : ${ }^{9} C_{2}=36$
Number of two digit pairs whose sum is divisible by $9:\{(1,8),(2,7),(3,6),(4,5)\}=4$
Simply take the ratio to get the probability that the seven digit number so formed is divisible by $9: \frac{4}{36}=\frac{1}{9}$
25. (d)

Let us assume the amount of work to be finished $=\operatorname{LCM}$ of $\{10,12,15,18\}=180$ units.
The amount of work which A can complete in a day $=\frac{180}{10}=18$ units.

The amount of work which B can complete in a day $=\frac{180}{12}=15$ units.

The amount of work which C can complete in a day $=\frac{180}{15}=12$ units.

The amount of work which D can complete in a day $=\frac{180}{18}=10$ units.
It is given that 50 percent of the total work gets completed after 3 days. Therefore, we can say that 90 units of work was completed in 3 days.
Let us check options.
Option (a) : Each of them worked for exactly 2 days.
In this case amount of work completed $=2 \times(10+15+12+18)=110$ units.
Option (b) : B and D worked for 1 day each, C worked for 2 days and A worked for all 3 days. In this case amount of work completed $=1 \times(10+15)+2 \times(12)+3 \times(18)=103$ units.
Option (c) : A and C worked for 2 days each, D worked for 1 day and B worked for all 3 days. In this case amount of work completed $=2 \times(18+12)+1 \times(10)+3 \times(15)=115$ units.
Option (d) : A and C worked for 1 day each, B worked for 2 days and D worked for all 3 days. In this case amount of work completed $=1 \times(18+12)+2 \times(15)+3 \times(10)=90$ units.
Therefore, we can say that option (d) is the correct answer.
26. (b)

The possible ways are
i. $\quad(25 \times 4)$
ii. $(22 \times 4+2 \times 6)$
iii. $(19 \times 4+4 \times 6)$
iv. $(16 \times 4+6 \times 6)$
v. $(13 \times 4+8 \times 6)$
vi. $(10 \times 4+10 \times 6)$
vii. $(7 \times 4+12 \times 6)$
viii. $(4 \times 4+14 \times 6)$
ix. $(1 \times 4+16 \times 6)$

Hence there are total 9 ways.
27. (a)

The terms $x, 17,3 x-y^{2}-2$ and $3 x+y^{2}-30$ are in A.P.
Common difference : $d=17-x$

$$
\begin{align*}
& d=3 x-y^{2}-19 \tag{ii}\\
& d=2 y^{2}-28
\end{align*}
$$

From equation (i) \& (ii),
$\Rightarrow \quad 4 x-y^{2}=36$

From equation (ii) \& (iii),

$$
\Rightarrow \begin{array}{rlrl}
& & 3 x-y^{2}-19 & =2 y^{2}-28 \\
x-y^{2} & =-3 \tag{v}
\end{array}
$$

Solving equation (iv) \& (v), we get :

$$
x=13, y^{2}=16
$$

$\Rightarrow \quad$ Terms are $=13,17,21,25$
$\therefore \quad$ Sum $=13+17+21+25=76$
Which is divisible by 2 . (among the given options)
28. (d)

Let Manufacturing Cost of the product $=₹ 100$
\Rightarrow Maximum Retail Price $($ MRP $)=100+\frac{55}{100} \times 100=₹ 155$
Retailer gives 10\% discount on MRP
\Rightarrow Retailer's selling price $=155-\frac{10}{100} \times 155=₹ 139.5$
It is given that the Retailer earned 23% profit on his purchase price, say $₹ x$

$$
\begin{aligned}
\Rightarrow & \frac{123 x}{100} & =139.5 \\
\Rightarrow & x & =\frac{13950}{123}=113.41
\end{aligned}
$$

Now, the purchase price of Retailer $=x=$ selling price of Manufacturer
\therefore Profit earned by Manufacturer $=113.41-100=₹ 13.41 \approx 13 \%$
29. (a)

Point $A(-1,7)$ does not lie outside the circle. So, point can lie on the circle or inside the circle.
Distance of A from center $=5$ units. So, for the points to lie inside the circle, the distance of given points from center has to be less than 5 units.
Point (i) - Distance between $(0,7)$ and $(2,3)=\sqrt{20}$, which is less than 5
Point (ii) - Distance between $(5,-1)$ and $(2,3)=5$
Point (iii) - Distance between $(-2,7)$ and $(2,3)=4 \sqrt{2}$, which is more than 5
So, option (a).
30. (d)

At least 3 out of 4 throws means 3 or 4 throws
So,

$$
P={ }^{4} C_{3} \times\left(\frac{1}{5}\right)^{3} \times \frac{4}{5}+\left(\frac{1}{5}\right)^{4}=\frac{17}{5^{4}} .
$$

