

ESE 2025 : Mains Test Series UPSC ENGINEERING SERVICES EXAMINATION

Mechanical Engineering

Test-3 : Fluid Mechanics + Fluid Machinery + Power Plant

Jaipur 🗌

Hyderabad 🗔

dia mon	
Name :	

Roll No:

F

Test Centres

elhi 🔽 .	Bhopal 🗌
une 🗌	Kolkata 🗌

Instructions for Candidates

- 1. Do furnish the appropriate details in the answer sheet (viz. Name & Roll No).
- 2. There are Eight questions divided in TWO sections.
- 3. Candidate has to attempt FIVE questions in all in English only.
- Question no. 1 and 5 are compulsory and out of the remaining THREE are to be attempted choosing at least ONE question from each section.
- 5. Use only black/blue pen.
- 6. The space limit for every part of the question is specified in this Question Cum Answer Booklet. Candidate should write the answer in the space provided.
- Any page or portion of the page left blank in the Question Cum Answer Booklet must be clearly struck off.
- 8. There are few rough work sheets at the end of this booklet. Strike off these pages after completion of the examination.

Student's Signature

Corp. office : 44 - A/1, Kalu Sarai, New Delhi-110016

Ph: 9021300500 | Web: www.madeeasy.in

IMPORTANT INSTRUCTIONS

CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CAREFULLY. VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

DONT'S

- 1. Do not write your name or registration number anywhere inside this Question-cum-Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- Write your registration number and other particulars, in the space provided on the cover of QCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, otherwise it may be evaluated.
- 6. Handover your QCAB personally to the invigilator before leaving the examination hall.

2.1(a)

An

Page 1 of 71

23

48

\$ = 43°

Vrz= kvrj =

263.690

386.65 m/s

353.46

ME

(16) Explain the working principle of a Electrostatic Precipitator (ESP) with the help of a neat and schematic diagram. Describe the main components of an ESP and their functions. Also, discuss the various factors that influence the performance of an ESP, and highlight the key advantages and disadvantages of using ESP.

[12 marks]

2.1 (c) A stream function is given by

 $\psi = 3x^2y + 4(2+t)y^2$

Find the flow rates across the faces of the triangular prism *OAB* shown in the figure, having a thickness of 1 unit in the *z*-direction at time t = 2.

thickness = 1 unit

flowrate = 41 - 42

$$aft=2
\forall at(0,0) = 3x0 + 4x2x0 = 0
\forall at(3,0) = 0
\psi at(0,2) = 0 + 4(2+2)x4
= 64$$

flow rate through $OB = \Psi(0,2) - \Psi(0,0)$ = 64 - 0= 64 - 0= 64 - 0= 64 - 0= 64 - 0= 64 - 0

flow rate through AB =
$$\Psi(0,2) - \Psi(03,0)$$

= $64-0$

Page 5 of 71

[12 marks]

Do not **MADE EASY** Question Cum Answer Booklet write in ME Page 6 of 71 this margin the second second second second c i c i c 1 1011 - 11 the fail and a second of a second 100 and standing the ?

(ME)

Q.1 (e) A centrifugal pump lifts water under a static head of 50 m of which 4 m is suction lift. The suction and delivery pipes are both of 37 cm diameter. The friction loss in suction pipe is 2.5 m and in delivery pipe it is 7 m. The impeller is 0.6 m in diameter and 3.3 cm wide at outlet and runs at a speed of 1250 rpm. The exit blade angle is 20°. If the manometric efficiency of the pump is 85%. Determine the pressures at the suction and delivery ends of the pump and the discharge (assume the flow to be radial at the inlet). [12 marks] Hm = Som h_=7m som $h_1 = 2.5m$ 4m exit U= TDN $\frac{1}{12} = \frac{1}{12} \frac{1}{12}$ 9.81 × 50. = 42 Vwg 577.06 = 42 Vwg Vf = 8.946 m/me Vwg = 14.69 m/ce 9 = V5 × (11)×+ 6.946 x 17 0.6 2 0.033 = 0.556 m3/cc $V_{1} = \frac{\varphi}{A} = \frac{\varphi}{\left(\frac{4\pi d^{2}}{4}\right)^{2}} = \frac{0.556}{\left(\frac{4\pi d^{2}}{4}\right)^{2}} = 5.171 \text{ m/sec.}$

Velocity in pipe = 5.141 m/sec
to Appling Bounoulic equation

$$\frac{r_0}{3g} + 0 = \frac{r_1}{3g} + \frac{v_1^2}{2g} + 3 + h_1$$

 $\frac{1.01325 \times 10^5}{1000 \times 9.81} = \frac{r_1}{3g} + \frac{517^2}{2 \times 9.8} + 4 + 25$
 $10.3263 - 1.3626 - 4 - 2.5 = \frac{r_1}{2}$
 $absolute pressure $\frac{r_1}{r_1} = 24.1657 \text{ m} \times 3g$
 $\frac{at C_{ATB}}{r_1}$
 $\frac{r_2}{r_2} + 50 + 0 = \frac{r_1}{3g} + \frac{5.171^2}{22g} + 4864$
 $r_1 = 2.4657 \text{ m} \times 3g$
 $\frac{at C_{ATB}}{r_2}$
 $r_1 = \frac{r_1}{3g} + \frac{5.171^2}{22g} + 4864$
 $r_2 = \frac{r_1}{3g} + \frac{r_2}{22g} + \frac{r_1}{22g} + \frac$$

100

Do not write in this margin

Q.2 (a) In a reheat cy.cle, steam at 500°C expands in a H.P. turbine till it is saturated vapour. It is then reheated upto a temperature of 400°C and then expands in the L.P. turbine to 50°C. If the maximum moisture content of the turbine exhaust is limited to 18%. Determine
(i) the reheat pressure
(ii) the net specific work output
(iv) the cycle efficiency

(v) the steam rate

ME

Assume all process are ideal.

[Use Steam Tables attached at the end]

ME	MADE	ERSY	Question	Cum Answe	er Booklet	I	Page 12 of 71	Do not write in this margin
								*
						/	/	
			1					

ME	Image The set of the set	Do not write in this margin

ME

Do not

write in

this margin

 $\frac{3}{8}r\left(\frac{\rho_l}{\rho}-1\right)$

- Q.2 (c) A turbo-jet engine consumes air at the rate of 50 kg/s when flying at a speed of 1800 km/h. Calculate
 - (i) Exit velocity of the jet when the enthalpy change for the nozzle is 300 kJ/kg and velocity coefficient is 0.96.
 - (ii) Fuel flow rate is kg/s when air-fuel ratio is 70 : 1.
 - (iii) Thrust specific fuel consumption.
 - (iv) Thermal efficiency of the plant when the combustion efficiency is 95% and calorific value f fuel used is 42000 kJ/kg.
 - (v) Propulsive power
 - (vi) Propulsive efficiency
 - (vii) Overall efficiency

ME	MADE E	ERSY	Question Cu	um Answe	er Bookle	t	Page 18 of 71	Do not write in this margin
							/	
				/				
								r.
		,						-

ME

- Do not write in this margin
- **Q.3 (a)** (i) A shaft with diameter D = 80 mm and a length 400 mm, as shown in figure is pulled with a constant velocity of U = 5 m/s through a bearing with variable diameter. The clearance between shaft and bearing, which varies from $h_1 = 1.2$ mm to $h_2 = 0.4$ mm, is filled with a Newtonian lubricant whose dynamic viscosity is 0.10 Pa.s. The shaft is rotating with a constant angular speed of n = 1450 rpm in a bearing with variable diameter. The torque required to maintain the motion is

(ii) Define viscosity, state and explain Newton's law of viscosity. Derive the expression for shear stress in terms of velocity gradient. Support your explanation with a neat diagram.

[10 + 10 marks]

Do not write in this margin **MADE EASY** Question Cum Answer Booklet ME Page 21 of 71

Q.3 (b)

- (i) Explain radial flow reaction turbine. Describe its main components with the help of schematic diagram.
- (ii) A Francis turbine with an overall efficiency of 75% is required to produce 150 kW power. It is working under a head (H) of 7.5 m. The peripheral velocity = $0.25\sqrt{2gH}$

and the radial velocity of flow at inlet is $0.95\sqrt{2gH}$. The wheel runs at 160 rpm and hydraulic losses in the turbine are 20% of the available energy. Assuming radial discharge, determine:

- (i) The guide blade angle
- (ii) The wheel angle at inlet
- (iii) Diameter of wheel at inlet, and
- (iv) Width of the wheel at inlet

[10 + 10 marks]

Do not write in this margin

Q.3 (c) The ultimate analysis of a coal used in steam generator is as follows carbon 63.0%, hydrogen 1.8%, sulphur 0.9%, nitrogen 1.7%, oxygen 1.4%, moisture 4.5% and ash 26.7% HHV of coal is 26 MJ/kg.

Analysis of flue gas reveals the following points.

CO₂ = 12.5%, CO = 1.7%, O₂ = 8%, N₂ = 77.8%

It is assumed that there is no unburnt carbon after combustion. Exhaust gas temperature is measured as 180°C, Unaccounted energy loss = 2.5% of HHV, Steam generation rate = 175 T/h, Steam condition at boiler outlet is equivalent to 120 bar and 500°C. Feed water inlet temperature is kept at 150°C. Heat of reaction for CO and CO₂ are 33 MJ/kg carbon and 9.5 MJ/kg carbon. Consider specific heat for dry flue gas as 1.05 kJ/kgK and ambient temperature as 35°C. Calculate

(i) The amount of dry flue gas produced per kg of fuel.

(ii) The dry exhaust loss and incomplete combustion loss per kg of fuel.

- (iii) Efficiency of boiler
- (iv) Burning rate of the fuel

(v) The percentage of excess air used

[Use Steam Table attached at the end]

ME

Q.4 (a) Air is flowing over a flate plate 500 mm long and 500 mm wide with a velocity of 5 m/s. The kinematic viscosity of air is given by $0.1 \times 10^{-4} \text{ m}^2/\text{s}$. Find

the boundary layer thickness at the end of the plate. (i)

0.Sm

shear stress at the end of the plate. (ii)

Vno= 5 m/se

The velocity profile over the plate as $\frac{U}{U_{\infty}} = \sin\left(\frac{\pi}{2}\frac{y}{\delta}\right)$ and density of air 1.2 kg/m³

Tom 00

ME	MADE	ERSY	Question Cum Answer Booklet	I	Page 29 of 71	Do not write in this margin
		•				
				,		
	-					
đ						

Q.4 (b) A 4800 kW gas turbine generating set operates with two compressor stages, the overall pressure ratio is 9 : 1. A high pressure turbine is used to drive the compressors, and a low pressure turbine drives the generator. The temperature of the gases at entry to the high pressure turbine is 650°C and the gases are reheated to 650° after expansion in the first turbine. The exhaust gases leaving the low pressure turbine are passed through a heat exchanger to heat air leaving the high pressure stage compressor. The compressors have equal pressure ratios and intercooling, is complete between the stages. The air inlet temperature to the unit is 25°C. The isentropic efficiency of each compressor stage is 0.82 and the isentropic efficiency of each turbine stage is 0.85, the heat exchanger thermal ratio is 0.8. A mechanical efficiency of 92% can be assumed for both the power shaft and compressor turbine shaft. Neglecting all pressure losses and changes in kinetic energy. Calculate

(i) The thermal efficiency.

ME

- (ii) Work ratio of the plant.
- (iii) The mass flow in kg/s

Neglect the mass of the fuel and assume the following:

For air, $c_{pa} = 1.005 \text{ kJ/kgK}$ and $\gamma = 1.4$

For gases in the combustion chamber and in turbines and heat exchanger, $c_{pq} = 1.15 \text{ kJ/kgK}$ and $\gamma = 1.333$

[20 marks] 923 8 1 81 432K 0 4321 31 Assumily alray 2981c 1298 K 2deel ges $pv^2 = Cost$ 5-Dentropic $\frac{T_{2}'}{T_{1}} = (P_{r})^{\frac{\gamma}{\gamma}} = 3^{\frac{0.9}{1\gamma}} = 7^{\frac{1}{2}} = 7^{\frac{1}{2}} = 407.86 \text{ k}$ $= 0.82 = 5^{1/2} - T_{1} = 7^{\frac{1}{2}} = 407.86 \text{ k}$ $T_{2} = -T_{1} = 7^{\frac{1}{2}} = 7^{\frac{1}{2}$

ME	made Easy Question Cum Answer Booklet Page 32 of 71	Do not write in this margin
	High P & turbine is used to drive compressor.	
	So $\eta \times C_{p}(T_{5}-T_{6}) = C_{p}(T_{4}-T_{3}) \times 2$	
	$0.92 \times 105 \times (7922 - T_6)$	
	$0.92 \times 1005 \times (7922 - T_6)$ $= 1.005 \times (432 - 2918) \times 2$ $I = 1.005 \times (432 - 2918) \times 2$ $I = 1.005 \times (432 - 2918) \times 2$	
	$T_6 = 658.92 \text{ K} \qquad \qquad \text{W}_7 \times \text{Nmech}$	
	$n_{T} = \frac{T_{s} - T_{6}}{T_{s} - T_{6}'} = \frac{923 - 658.12}{923 - T_{6}'} = 0.85$	
	$T_{i}^{1} = 612.317 \text{ k}$ $= \underbrace{0.323}_{0.323}$ $P_{i} = \underbrace{T_{5}}_{T_{6}^{1}} = (P_{1})^{1.323} P_{1} = 5.169$	
	$P_{1} = \frac{9}{5.169}$	
	T ₇ 2 922 =	15-1
	$T_{7} = 922$ $T_{7} = \begin{pmatrix} 0.32 \\ 1.33 \end{pmatrix}$ $T_{31} = 804.36$ $T_{7} = (r_{2})^{1.33}$ $T_{7} = T_{7} = 7$	
	$T_{T} = \frac{T_{T} - T_{8}}{T_{T} - T_{6}} = 0.85$	
	$T_{8} = 822.156 \text{ k}$	
	Heat exchanges thermal ratio = 0.8	
	$\varphi_{a}\left(T_{b}-T_{a}\right)=0.8$	
	$\frac{9}{9} \frac{(T_8 - T_a)}{(T_8 - T_4)} = 0.8$ $\frac{9}{9} \frac{(T_8 - T_4)}{T_8 - T_4} = 0.8$	
	$T_{q} = \frac{549}{786} \frac{1}{12} \frac{1}{12}$	
	7 = 014,000, - 010 =	
		-

.

$$\frac{1}{2}$$

$$\frac{1$$

Do not write in this margin

Q.4 (c) (i) A jet

A jet of water having a velocity of 30 m/s impinges on a series of vanes moving with a velocity of 14 m/s. The jet makes an angle of 25° to the direction of motion of vanes entering and leaves at an angle of 125°. Draw the velocity triangles at inlet and outlet and find

- 1. the angles of vanes tip so that water enters and leaves without shock.
- 2. the work done per unit weight of water entering and leaves without shock.
- 3. the efficiency
- (ii) Derive the expression for the efficiency of a pelton turbine. Also determine the condition for maximum efficiency and obtain the expression for the maximum efficiency of turbine.

Ó

[10 + 10 marks]

12.678

Exit 27-189=Nw1 120 4=14 1V J 12.6782+ (97.189-14)2 12.678 18.29 m/w

u=14

\$ = 93.818° assuming no triction Vr. = Vr1 18.29 m/sie Sm (90 Sinles 18.2 57.17

ADE EASY Question Cum Answer Booklet

Do not write in this margin

assume & Nozile velocity CD petton tubine Blade nebouty = U Relative velocity at entry and exit outlet V2 are Vr, bo Vrz X 22 u u 0 friction coefficient of Blede > kz Vr. Vy =. KW, Inlet workdone = u (Vw, + Vw2) = u (va) + (vy as 0-u) = u ((v - u) + k (v - u) Cos 0 - 4] = 4 (V-4) (1+ K 6050) efficing $n = \frac{w_{0} + k_{0} + k_{0}}{\frac{1}{2} + \frac{1}{2} + \frac{1}{$ $M_{e} = \frac{2u}{v} \left(1 - \frac{u}{v} \right) \left(1 + k \cos \theta \right)$ assume $\frac{u}{v} = g$ η = 29(1-9) (H+ 6000) for maximulation $\frac{dn}{dp} = 0$ $1 - 2\beta = 0$ $\beta = \frac{1}{2}$ 1 2 mg = 1+ 2

ME	MADE EASY Question Cum Answer Booklet Page 37 of 71	Do not write in this margin
		ex.m
17.0		-
*		

Do not write in

ME	MADE EASY Question Cum Answer Booklet Page 39 of 71	write in this margin
	$4r = -\frac{c \sin \theta}{6 e^{r^2}} + 4r + 52$ $4r = -\frac{c \sin \theta}{6 e^{r^2}} + 4r + 52$	
	$U_{r} = -\frac{c\sin\theta}{6er^{2}} + yr + C_{2}$	-
	assuming 984=0	
	$\Theta \qquad \qquad$	
	O Magnitute = J 42+ 402	
	$= \frac{\operatorname{Cstn} \Theta}{\operatorname{912}} \left[\sqrt{\frac{1}{36} + 1} \right]$	
**	= 1.0138 CSIN 0 912	
	$fan \Theta = \frac{40}{4r}$	
	$= \frac{-1}{-V_6}$	
	$\Theta = tm(6)$	
	= 80.540	

Do not

ME	MADE	ERSY	Question	Cum A	nswer Bo	oklet		Page 40 of 71	bo not write in this margin
	1.5								
								. *	
									-
				957					
	1								1

ME MADE EASY Question Cum Answer Booklet

MAD

3

E

Efficient

3

=

-

ERSY Question Cum Answer Booklet v 2

29

88.21 %

12.52 _ 1.(72 - 0.796

12.52

- HL

V12

29

Page 42 of 71

XIO

Do not write in this margin

- Turbojet engine 1.
- Turbofan engine 2.
- 3. Turboprop engine
- Ramjet engine 4.
- 5. Scramjet engine
- Pulse jet engine 6.

[12 marks]

Twober che engine =

ME	MADE ERSY Question Cum Answer Booklet	Page 43 of 71	Do not write in this margin
	~		
	۲		
			2
			·

ME	MADE EASY Question Cum Answer Booklet Page 44 of 71	Do not write in this margin
Q.5 (d)	With the help of a neat schematic explain the working of a circulating type fluidized bed boilers.	
	[12 marks]	
ų,		
2.5		
9		
		-
		1

Page 45 of 71

Do not write in this margin

MADE EASY Question Cum Answer Booklet

Do not write in this margin

(i) which have per gote
power mput =
$$\frac{1}{11}$$
 $\frac{1}{12}$ $\frac{1}$

2.6 (b) The diameter of the runner of a vertical-shaft turbine is 450 mm at the inlet. The width of the runner at the inlet is 50 mm. The diameter and width at the outlet are 300 mm and 75 mm, respectively. The blades occupy 8% of the circumference. The guide vane angle is 24°, the inlet angle of the runner blade is 95° and the outlet angle is 30°. The fluid leaves the runner without any whirl. The pressure head at the inlet is 55 mm above that at the exit from the runner. The fluid friction losses account for 18% of the pressure head at inlet. Calculate the speed of the runner and the output power (use mechanical efficiency as 95%)

[20 marks]

MADE EASY Question Cum Answer Booklet

Do not

write in

this margin

Q.6 (c) Water flows into atmosphere through a vertical bend nozzle assembly shown in figure below. The pipe diameter is 10 cm and the nozzle exit diameter is 5 cm. The rate of flow of water is 2400 litre per minute. The interior volume of the assembly is 18.2 litre. The head loss in the bend is $0.5 v^2/2g$ and in the nozzle it is v^2/g , where v is the velocity of water in the pipe. Determine the hydrodynamic force on the system and its direction.

[20 marks]

in horrle

ME

$$H_{LN}^{2} \frac{\sqrt{2}}{g} = 2.64 \text{ m}$$

Piz? Ustry Benortie eg.

$$\frac{R}{3} + \frac{\gamma L}{25} + 2 = \frac{R}{9} + \frac{\gamma L}{25} + 2 = \frac{R}{9} + \frac{\gamma L}{25} + \frac{\gamma$$

MADE ERSY Question Cum Answer Booklet

ME

Page 53 of 71

l

- Q.7 (a) (i) A pipeline carrying water has surface protrusions of average height of 0.12 mm. If the shear stress developed is 8.6 Pa, determine whether the pipe surface acts as smooth, rough or in transition. For water take $\rho = 1000 \text{ kg/m}^3$ and kinematic viscosity $\nu = 0.0093$ stokes.
 - (ii) The velocity of flow in a badly corroded 8 cm pipe is found to increase 20 percent as a Pitot tube is moved from a point 1 cm from the wall to a point 2 cm from the wall. Estimate the height of roughness elements.

[10 + 10 marks]

MADE ERSY Question Cum Answer Booklet

ME

- 2.7 (b) (i) Explain the working principle of a wet type cooling tower. Also, classify and describe the various types of wet cooling towers with neat sketches.
 - (ii) Water at 35°C flows into a cooling tower at the rate of 1.2 kg per kg air. Air enters the tower at *dbt* of 25°C and relative humidity of 50% and leaves it at *dbt* of 30°C and 80% relative humidity. Makeup water is supplied at 25°C. Determine
 - (i) The temperature of water leaving the tower.
 - (ii) The fraction of water evaporated and
 - (iii) The approach and range of cooling tower

[Take atmospheric pressure, P = 1 bar & specific heat of water as 4.18 kJ/kgK]

[Use Steam Table and Psychrometric chart attached at the end]

[10 + 10 marks]

ME	MADE ERSY Question Cum Answer Booklet Page 60 of 71	Do not write in
	TITHUE EH33 Question cum Answer booklet 1 Page 60 01 /1	this margin
Q.7 (c)		
	Shaft power = 22500 kW; Head = 20 m; Speed = 148 rpm; Hydraulic efficiency = 95%; Overall efficiency = 89%; Diameter of the runner = 4.5 m	
	Diameter of the hub = 2 m; Runner vane angle at outlet = 34°	
	Assuming that the velocity of flow is constant. Find:	
	(i) Guide vane angle at inlet;	
	(ii) Runner vane angle at inlet	
٨	[20 marks]	
A	H = 20 M = 148	
Kat	$y = \frac{170}{60} = 15.498 \text{ m/s}$	
V	$\frac{4}{3} = \frac{172}{60} = 34.87$ m/m	
	$P_{\text{tubru}} \times n_0 = 22500$	
	$P_{tubre} \times n_{0} = 22500$ (89 gH) × n_{0} = 22500	
	$9 = \frac{0.1146 \text{ m}^3}{6.89 \text{ x} 103}$	
	$\varphi = 0.1288 m^2/see$ ×103 =	
	$V_{f} \times \pi (D_{0}^{2} - D_{1}^{2}) = 0.1282 \times 10^{3}$	
	Vf = 0.01 mt see	
	Vz 2 10.09 m/sex	
	M.H = 0.95	
19		
	P	

UH

Do not write in this margir

ME

Q.8 (a) (i) A boiler uses 2100 kg/h of coal. The temperatures of air supplied is 290 K and the average temperature of the flue gas leaving the chimney is 620 K. The 35 m high chimney produces a drought of 22 mm of water column. Determine

- 1. Quantity of air supplied per kg of coal.
- 2. The draught in terms of column of hot gases, and
- 3. The base diameter of chimney.

Assume that 10% of the theoretical draught is used for creating the flow velocity of gases through the chimney.

(ii) The following readings were obtained during a boiler trial of 6 hours duration: Mean steam pressure = 12 bar; Mass of steam generated = 45000 kg; Mean dryness fraction = 0.9; Mean feed water temperature = 30°C; Cool used 5000 kg; Calorific value of coal = 33500 kJ/kg.

Calculate:

- 1. Factor of equivalent evaporation.
- 2. Equivalent evaporation from and at 100°C.
- 3. Efficiency of the boiler.

[Use Steam Table attached at the end]

[10 + 10 marks]

^{[10 + 10} marks]

Do not write in this margin ME **MADE EASY** Question Cum Answer Booklet Page 66 of 71

Do not write in this margin **MADE ERSY** Question Cum Answer Booklet ME Page 68 of 71 C