

IMPORTANT INSTRUCTIONS

CANDIDATES SHOULD READ THE UNDERMENTIONED INSTRUCTIONS CANDIDATES SHOULD REAL CAREFULLY. VIOLATION OF ANY OF THE INSTRUCTIONS MAY LEAD TO PENALTY.

DONT'S

- Do not write your name or registration number anywhere inside this Question-cum-1. Answer Booklet (QCAB).
- 2. Do not write anything other than the actual answers to the questions anywhere inside your QCAB.
- 3. Do not tear off any leaves from your QCAB, if you find any page missing do not fail to notify the supervisor/invigilator.
- 4. Do not leave behind your QCAB on your table unattended, it should be handed over to the invigilator after conclusion of the exam.

ć., . . .

DO'S

- 1. Read the Instructions on the cover page and strictly follow them.
- 2. Write your registration number and other particulars, in the space provided on the cover of QCAB.
- 3. Write legibly and neatly.
- 4. For rough notes or calculation, the last two blank pages of this booklet should be used. The rough notes should be crossed through afterwards.
- If you wish to cancel any work, draw your pen through it or write "Cancelled" across it, 5. otherwise it may be evaluated.
- Handover your QCAB personally to the invigilator before leaving the examination hall. 6.

				a Anacili/A	r Booklet	1	Page 3 of 61	Do not write in this margin
EST	MADE	EASY	Question	Cum Answe				
								A
							* .	
							1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	
				4.			I	
			,					
						O s	canned with	OKEN Scan

MADE EASY Question Cum Answer Booklet

THE EASY Question Cum Answer Bookles

$$Prychol of The answer Bookles
$$Prychol of The answe$$

MADE EASY Question Cum Answer Booklet

Ē

0	mac

à

DE EASY Question Cum Answer Bookles

	MADE ERSY Question Cum Answer Booklet Page 24 of 61	Do not∞ write in this margin
Q.4 (a)	 (i) Explain how linear convolution is performed using DFT. Find the linear convolution of x[n] = {1, 1, 1} and h[n] = {1, 1} using DFT. (ii) Derive the relationship between discrete Fourier series coefficients (C_k) and discrete Fourier Transform X(k) of a signal x[n]. [15 + 5 marks] 	
	· · · · · · · · · · · · · · · · · · ·	
	Scanned with	OKEN So

MADE	EASY	Question	Cum Answ	er Booklet		Page 27 of 61	ribel First Werfe in Blin Insanigue
					O	Scanned with	OKEN Scanner

	m	TDE ERSY Question Cum Answer Booklet	Page 29 of 61	Parissi Halina Hitangiya
Q.4 (c)	(i) (ii)	PDE EASY Question Cum Answer Booklet Write an 8051 assembly language program for converting the p stored at the location 900011 into its equivalent binary number at 9001H. Write an 8086 assembly language program to find the sum $\sum_{i=1}^{10} i$ in accumulator.	acked BCD number and store the result	U it manya
			Scanned with	

0

MADE EASY Question Cum Answer Booklet Page 31 of 60

NADE EASY Question Cum Answer Booklet

EAT

made ERSY Question Cum Answer Booklet Page 36 of 61

$$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right)^{-1} \frac{1}{2} \frac{1}{2}$$

-

Page 41 of 61

Scanned with OKEN Scanner

$$J_{B} = \overline{A}x; \qquad K_{B} = A + x\overline{y}$$
$$Z = A \overline{x} \overline{y} + B \overline{x} \overline{y}$$

- (i) Draw the logic diagram of the circuit.
- (ii) Tabulate the state table.
- (iii) Derive the state equations for A and B.

Do not write in

this margin

	MF	ADE EASY Question Cum Answer Booklet Page 48 of 61	
Q.7 (a)	(i)	With a neat block diagram, explain the operation of counter type ADC. Give advantages and disadvantages of counter type ADC.	
	(ii)		
		1. High state noise margin.	
		 Low state noise margin. Newshare (NIAND gate inputs that can be drive (). 	
		3. Number of NAND gate inputs that can be driven from the output of a NAND gate of this type.	
		[12 + 8 marks]	
		1	
		' '	
		t'	
i			
		Scanned with OK	(EN S

•	MADE	EASH Question Cum Answer Booklet	ľ	Page 49 of 61	Clear-ol unettar to this municipal
---	------	----------------------------------	---	---------------	--

Page 50 of 61

Q.7 (b) Each of the following arithmetic operation is correct in atleast one number system. Determine the possible bases in each operation

(i) $3441 + 4235 = 7676$	(10) $\frac{142}{2} - 16$
(111) 23 + 44 + 14 + 32 = 223	(iv) 21 = 16 - 366
(v) $\frac{302}{20} = 12.1$	(vi) /51 = 6

En

[20 marks]

Q.7 (c)

Consider a discrete-time low-pass filter whose impulse response h[n] is known to be (i) real and whose frequency response magnitude in the region – $\pi \leq \omega \leq \pi$ is given as,

$$\left| H\left(e^{j\omega}\right) \right| = \begin{cases} 1; & |\omega| \le \frac{\pi}{3} \\ 0; & \text{otherwise} \end{cases}$$

Determine the real-valued impulse response h[n] for this filter when the corresponding group-delay function is $\tau_g(\omega) = \frac{3}{2}$.

(ii) Design a block level architecture of a 5 coefficient FIR filter by using appropriate number of multipliers, adders and registers. Assume that all the input operands are available in 4 bit, 2's complement fixed point representation. The architecture should give one output per clock cycle.

[10 + 10 marks]

Ð

MADE EASY Question Cum Answer Booklet Page 52 of 61

made EASH Question Cum Answer Booklet Page 51 of a	

- Do not write in this margin
- Draw the block diagram of programmable peripheral interface 8255A. Q.8 (a) (i)
 - (ii) Explain BSR (Bit Set/Reset) mode of 8255A

E&T

(iii) Write a BSR control word subroutine to set bits PC_7 and PC_3 and reset them after some delay, using the below I/O port addresses.

C S		Hexadecimal Address	Port
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} A_1 & A_0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$	= 80H = 81H = 82H = 83H	A B C Control Register

[20 marks]

4	1981	
	-	

MADE EASY Question Cum Answer Booklet Page 56 of 61

Œ

MADE EASY Question Cum Answer Booklet

Suppose we are given the following information about a continuous ture periods: Q.8 (b) (i) signal x(t) with period 3 and Fourier series coefficients a_k :

1.
$$a_k = a_{k+2}$$

2. $a_k = a_{-k}$
3. $\int_{-0.5}^{0.5} x(t)dt = 1$
4. $\int_{0.5}^{1.5} x(t)dt = 2$

Determine x(t).

(ii) A causal LTI system 'S' has the block diagram representation as shown in figure below.

Determine a differential equation relating the input x(t) to the output y(t) of this system.

[10 + 10 marks]

MADE	ERSY	Question	Cum Ansv	ver Booklet		Page	58 of 61	Deinit stifein this margin
					/			
					Q	Scanned	d with (OKEN Scanner

		•	-		det		Page 59 of 61	Do not Write in
MADE	ERSY	Question	Cum Ans	wer Book				this margin

Do not write in this margin

Consider the state diagram of Moore machine shown below: Q.8 (c)

E&T

Get the excitation equations and Boolean equations for output Z of Mealy machine. Also design the Mealy machine using J-K flip-flop.

[20 marks]

	₿.
	MADE
	ERSY Question Cum Answer Booklet
0000	Cum Answe
	er Booklet
	-
	Page 61 of 61
	Do rot wite in this maight

3.5

14

•

