

MADE EASY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

ENGINEERING HYDROLOGY

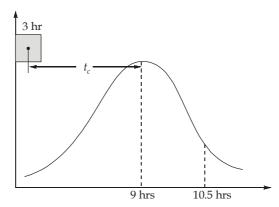
CIVIL ENGINEERING

Date of Test: 26/11/2025

ANSWER KEY >

•	۱.	(c)	7.	(b)	13.	(a)	19.	(b)	25.	(c)
2	2.	(b)	8.	(b)	14.	(a)	20.	(a)	26.	(a)
3	3.	(b)	9.	(c)	15.	(d)	21.	(b)	27.	(d)
4	1.	(b)	10.	(b)	16.	(b)	22.	(b)	28.	(a)
į	5.	(b)	11.	(c)	17.	(c)	23.	(d)	29.	(b)
(6.	(d)	12.	(b)	18.	(a)	24.	(b)	30.	(d)

1. (c)


Time duration (hr)	Rainfall (cm)	Rainfall intensity (cm/hr)	Runoff (cm)		
0-0.5	2	$\frac{2}{0.5} = 4 \mathrm{cm/hr}$	$(4-4) \times \frac{1}{2} = 0 \mathrm{cm}$		
0.5 – 1	4	$\frac{4}{0.5} = 8 \mathrm{cm/hr}$	$(8-4) \times \frac{1}{2} = 2 \mathrm{cm}$		
1-1.5	3	$\frac{3}{0.5} = 6 \mathrm{cm/hr}$	$(6-4) \times \frac{1}{2} = 1 \mathrm{cm}$		

Total runoff = (2 + 1) cm = 3 cm

2. (b

Due to urbanization, infiltration and storage capacity of soil reduces which leads to the following:

- 1. increase in peak discharge
- 2. decrease in time base and time of concentration
- 3. increase in the volume of runoff
- 3. (b)

Time of concentration = $\left(9 - \frac{3}{2}\right)$ hr = 7.5 hr

- 4. (b)
- 5. (b)
- 6. (d)

$$V_h \propto h^{1/7}$$

$$\frac{V_4}{V_{10}} = \left(\frac{4}{10}\right)^{1/7}$$

$$\Rightarrow \frac{16}{V_{10}} = (0.4)^{1/7}$$

$$\Rightarrow V_{10} = 18.2376 \text{ kmph}$$
$$= 5.066 \text{ m/s}$$

7. (b)

8. (b)

Given, Time period, T = 60 years,

So,
$$p = \frac{1}{T} = \frac{1}{60}$$

Now,
$$q = 1 - p = 1 - \frac{1}{60} = \frac{59}{60}$$

Now, probability of 1 hour rainfall greater than 10 cm once in 30 years = $^{30}C_1 p^1 q^{(30-1)}$

$$= {}^{30}C_1 \left(\frac{1}{60}\right) \left(\frac{59}{60}\right)^{29} = \frac{30!}{29!1!} \left(\frac{1}{60}\right)^1 \left(\frac{59}{60}\right)^{29} = 0.307$$

10. (b)

Using normal ratio method, missing annual rainfall at station X is given by

$$p = \frac{N_x}{n} \left[\frac{P_A}{N_A} + \frac{P_B}{N_B} \right]$$

where m is total number of neighboring stations,

$$p = \frac{250}{2} \left[\frac{140}{200} + \frac{270}{300} \right] = 200 \text{ mm}$$

11. (c)

Effective rainfall is difference of the total rainfall and losses such as infiltration, evapotranspiration etc.

The given rainfall is during 1 hr intervals, so they can be considered as rainfall intensity.

Since ϕ -index is 12 cm/hr, so rainfall during 1st and 4th hour is not considered in effective rainfall as it infiltrates.

Effective rainfall depth = $(20 - 12) \times 1 + (40 - 12) \times 1 = 36$ cm

12. (b)

Inflow – Outflow = Change in storage
$$(I + R) - (O + S + E) = \Delta S$$

$$\left(\frac{15 \times 30 \times 24 \times 3600}{30 \times 10^6} + \frac{15}{100}\right) - \left(\frac{20 \times 30 \times 24 \times 3600}{30 \times 10^6} + \frac{2}{100} + E\right) = -\frac{20 \times 10^6}{30 \times 10^6}$$

$$1.296 + 0.15 - 1.728 - 0.02 - E = -0.667$$

$$E = 0.365 \text{ m} = 36.5 \text{ cm}$$

13. (a)

Given,
$$\phi$$
-index = 1 cm/hr

Base flow =
$$10 \text{ m}^3/\text{s}$$

Excess rainfall in first 2 hours = $2 \text{ cm} - \phi \times \Delta t$

$$= 2 \text{ cm} - 1 \text{ cm/hr} \times 2 = 0 \text{ cm}$$

Excess rainfall in second 2 hours = $6 \text{ cm} - \phi \times \Delta t$

$$= 6 \text{ cm} - 1 \text{ cm/hr} \times 2$$

Excess rainfall in third 2 hours = $4 \text{ cm} - \phi \times \Delta t$

$$= 4 cm - 1 cm/hr \times 2$$

$$= 2 cm$$

The calculation are tabulated below:

Time (hr)	2		Ordinate of 4 cm DRH (Col. 2 lagged by 2h) × 4	Ordinate of 2 cm DRH (Col. 2 lagged by 4h) × 2	Ordinate of 6 cm DRH (Col. 3 + Col. 4 + Col. 5)	
1	2	3	4	5	6	
0	0	0	_	_	0	
2	4	0	0	_	0	
4	8	0	16	0	16	
6	16	0	32	8	40	
8	10	0	64	16	80	
10	8	0	40	32	72	
12	6	0	32	20	52	
14	0	0	24	16	40	
			0	12	12	
				0	0	

Hence, peak flow of 6 cm DRH = $80 \text{ m}^3/\text{s}$ So, peak flow of flood hydrograph = $80 + 10 = 90 \text{ m}^3/\text{s}$

14. (a)

$$F_p = \int_{1}^{2} (2 + e^{-2t}) dt = \left[2t + \frac{e^{-2t}}{-2} \right]_{1}^{2}$$

$$= \left(2 \times 2 - \frac{e^{-4}}{2} \right) - \left(2 \times 1 - \frac{e^{-2}}{2} \right)$$

$$= 4 - \frac{1}{2e^4} - 2 + \frac{1}{2e^2} = 2.0585 \text{ cm} \approx 2.06 \text{ cm}$$

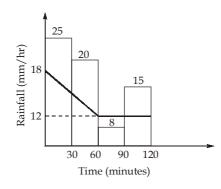
15. (d)

Mean precipitation,
$$\overline{x} = \frac{115.5 + 106.8 + 125.4 + 95.6 + 90.4}{5} = 106.74 \text{ cm}$$

Standard deviation, $\overline{\sigma} = \sqrt{\frac{\Sigma(x_i - x^{-2})}{n - 1}}$

$$\overline{\sigma} = \sqrt{\frac{[(106.74 - 115.5)^2 + (106.74 - 106.8)^2 + (106.74 - 125.4)^2]}{4}}$$
 $\overline{\sigma} = 14.283$

Hence, $C_v = \frac{\overline{\sigma}}{\overline{x}} \times 100$ $\Rightarrow C_v = \frac{14.283}{106.74} \times 100 = 13.38 \%$


Number of optimum rainguages,

$$N = \left(\frac{C_v}{\epsilon}\right)^2$$

$$\Rightarrow N = \left(\frac{13.38}{5}\right)^2 = 7.16 \approx 8$$

Number of additional rain gauges = 8 - 5 = 3

16. (b)

For first hour,

Total precipitation =
$$\left(25 \times \frac{30}{60}\right) + 20\left(\frac{30}{60}\right) = 22.5 \text{ mm}$$

Total infiltration =
$$\frac{1}{2}(18+12)\left(\frac{60}{60}\right) = 15 \text{ mm}$$

Runoff for first hour = 22.5 - 15 = 7.5 mm For 60 min to 90 min,

Total precipitation =
$$8 \times \frac{30}{60} = 4 \text{ mm}$$

Total infiltration =
$$12 \times \frac{30}{60} = 6 \,\text{mm}$$

Note: Since rate of infiltration is more, hence total infiltration will be equal to total precipitation and surface runoff will be zero.

For 90 minutes to 120 minutes,

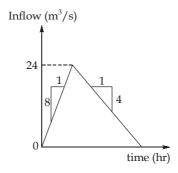
Total precipitation =
$$15 \times \frac{30}{60} = 7.5 \text{ mm}$$

Total infiltration =
$$12 \times \frac{30}{60} = 6 \text{ mm}$$

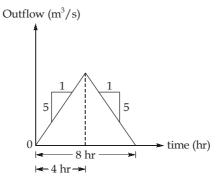
Runoff =
$$7.5 - 6 = 1.5 \text{ mm}$$

Now, total infiltration =
$$15 + 4 + 6 = 25 \text{ mm}$$

Total runoff =
$$7.5 + 1.5 = 9 \text{ mm}$$


$$\therefore \qquad \text{Required Ratio} = \frac{25}{9} = 2.778 \approx 2.78$$

17. (c)


3-hr UH (m³/s)

Time (hr)	2-hr UH (m³/s)	Offset S-curve ordinate	S-curve ordinate	S-curve ordinate lagged by 3 hr	Δy	$\Delta y \cdot \frac{2}{3}$
0	0	-	0	-	0	0
1	36	-	36	-	36	24
2	91	0	91	-	91	60.67
3	76	36	112	0	112	74.67
4	40	91	131	36	95	63.33
5	25	112	137	91	46	30.67
6	6	131	137	112	25	16.67
7	0	137	137	131	6	4
	0	137	137	137	0	0

18. (a)

Time at peak flow of inflow hydrograph = $\frac{1}{8} \times 24 = 3 \text{ hr}$

Peak of outflow hydrograph = $4 \times 5 = 20 \text{ m}^3/\text{s}$ Therefore, Peak lag = 4 - 3 = 1 hrPeak attenuation = $24 - 20 = 4 \text{ m}^3/\text{s}$

19. (b)

Given, saturation vapour pressure,

 e_s = 16.84 mm of Hg

 $\therefore \qquad \text{Relative humidity} = \frac{\text{Actual vapour pressure}}{\text{Saturation vapour pressure}}$

$$\Rightarrow \qquad 0.75 = \frac{e_a}{e_s}$$

$$\Rightarrow$$
 $e_a = 0.75 \times 16.84 = 12.63 \text{ mm of Hg}$

Now, wind velocity at height of 9 m above ground surface,

$$V_9 = V_1(9)^{1/7}$$

= 15 × 9^{1/7} = 20.53 kmph

From Meyer's method,

Evaporation loss,
$$E_L = k_m (e_s - e_a) \left(1 + \frac{V_9}{16} \right)$$

= $0.5 \left(16.84 - 12.63 \right) \left(1 + \frac{20.53}{16} \right) = 4.81 \text{ mm/d}$

20. (a)

The area of the hyetograph above the infiltration curve represents the runoff volume.

21.

Coalescence process occurs through electrostatic attraction amongst the oppositely charged cloud particles.

In the ice-crystal process, the water droplets may exist in clouds at subfreezing temperatures down to -40°C. In this range, solidification occurs in connection with certain particles which are called freezing nuclei.

22. (b)

Since k = 12 hr and $2 kx = z \times 12 \times 0.2 = 4.8$ hr

 Δt should be such that 12h > Δt > 4.8 hr

Taking $\Delta t = 6 \text{ hr}$

$$C_0 = \frac{-kx + 0.5\Delta t}{k(1-x) + 0.5\Delta t} = \frac{-12 \times 0.2 + 0.5 \times 6}{12 - 12 \times 0.2 + 0.5 \times 6} = 0.048$$

$$C_2 = \frac{k(1-x) - 0.5\Delta t}{k(1-x) + 0.5(\Delta t)} = \frac{12 - 12 \times 0.2 - 0.5 \times 6}{12 - 12 + 0.5 \times 6} = 0.524$$

23. (d)

As per dilution technique,

Discharge in stream,
$$Q = \frac{Q_1[C_1 - C_2]}{C_2 - C_0}$$

where,
$$Q_1 = 35 \times 10^{-3} \,\text{m}^3/\text{sec.}$$

$$C_0 = 15 \text{ ppm} = 15 \text{ mg/L}$$

 $C_1 = 300 \text{ g/l} = 300 \times 10^3 \text{ mg/L}$

$$C = 70 \text{ ppm} = 70 \text{ mg/I}$$

$$C_2 = 70 \text{ ppm} = 70 \text{ mg/L}$$

$$Q = \frac{35 \times 10^{-3} \left[300 \times 10^{3} - 70 \right]}{70 - 15} = 190.86 \approx 191 \text{ m}^{3}/\text{sec}$$

24. (b)

:.

Given: Radius of well,

$$r_w = 0.225 \text{ m}$$

[: diameter of well, $D_w = 0.45 \text{ m}$]

Discharge in well,

$$Q = 1500 \text{ l/min} = 0.025 \text{ m}^3/\text{sec}$$

Thickness of aquifer,

$$H = 45 \,\mathrm{m}$$

 $r_A = 10 \text{ m}$ Now, at $s_A = 5 \text{ m}$ Drawdown, $h_A = 45 - 5 = 40 \text{ m}$ So, $r_{\rm R} = 30 \, {\rm m}$ At, $s_R = 2 \text{ m}$ Drawdown, $h_R = 45 - 2 = 43 \text{ m}$ So,

Now, as we know,

$$Q = \frac{\pi k \left(h_B^2 - h_A^2 \right)}{\ln \left(\frac{r_B}{r_A} \right)}$$

...(i) where k is proportionality of soil

$$\Rightarrow \qquad 0.025 = \frac{\pi \times k \times (43^2 - 40^2)}{\ln\left(\frac{30}{10}\right)}$$

$$\Rightarrow \qquad \qquad k = 3.511 \times 10^{-5} \,\mathrm{m/s}$$

Again,
$$Q = \frac{\pi k \left(h_B^2 - h_w^2 \right)}{\ln \left(\frac{r_B}{r_w} \right)}$$

$$\Rightarrow 0.025 = \frac{\pi \times 3.511 \times 10^{-5} \times (43^2 - h_w^2)}{\ln\left(\frac{30}{0.225}\right)}$$

$$\Rightarrow h_{w} = 27.203$$

Drawdown in well, $s_w = H - h_w = 45 - 27.203 = 17.8 \text{ m}$ So,

25. (c)

Isochrone is an imaginary line joining the points having same value of time of concentration. Line joining equal depth of rainfall on a map is called iso-pluvial/isohyetal line.

26. (a)

$$P = [10 + 30 + 40 + 50 + 25 + 8] \times \frac{30}{60} = 81.5 \text{ mm}$$

$$R = 38 \text{ mm}$$

$$W_{\text{index}} = \frac{P - R}{t} = \frac{81.5 - 38}{\left(\frac{180}{60}\right)} = 14.5 \text{ mm/hr}$$

Now, from t = 0 to 30 minutes and from t = 150 to 180 minutes, rainfall intensity is less than W_{index} .

So,
$$\phi_{Index} = \frac{81.5 - 38 - ((10 + 8) \times 0.5)}{\frac{[180 - 30 - 30]}{60}} = 17.25 \text{ mm/hr}$$

27. (d)

Equivalent uniform rainfall depth

$$P = \frac{\left(\frac{14+12}{2}\right)20 + \left(\frac{12+10}{2}\right)25 + \left(\frac{10+8}{2}\right)15 + \left(\frac{8+6}{2}\right)35 + \left(\frac{6+4}{2}\right)20}{\left(20+25+15+35+20\right)}$$

$$\Rightarrow P = \frac{13 \times 20 + 11 \times 25 + 9 \times 15 + 7 \times 35 + 5 \times 20}{(20 + 25 + 15 + 35 + 20)}$$

$$\Rightarrow$$
 $P = 8.83 \text{ cm}$

:. Runoff depth,
$$R = kP = 0.4 \times 8.83 = 3.53 \text{ cm}$$

$$\therefore$$
 Volume of runoff = 3.53 × (Area of the catchment)

=
$$3.53 \times [20 + 25 + 15 + 35 + 20] \times \frac{10^6}{10^2}$$
 m³
= 4059500 m³ = 405.95 ha-m

28. (a)

Muskingum equation for storage is given by,

$$S = k \left[x I^m + (1 - x) Q^m \right]$$

For natural reservoir,

$$m = 1$$

For linear storage or linear reservoir, x = 0

$$S = kO$$

29. (b)

Given : T = 2 years

$$P = \frac{1}{T} = \frac{1}{2}$$

$$P = \frac{M - 0.5}{N} = \frac{1}{2}$$
Here,
$$N = 7$$

$$M = \frac{7}{2} + 0.5 = 4 \text{ (order number)}$$

Arranging the given data in descending order

Rainfall (cm)	15	14.1	13.8	13	12.7	11.3	11
Order number (m)	1	2	3	4	5	6	7

For M = 4

Rainfall = 13 cm

30. (d)