• CLASS TEST •					S.No.: 03SKCE_J+K_290625					
ERSE ERSE ERSE ERSE ERSE ERSE ERSE ERSE										
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
	Date of Test : 29/06/2025									
AN	SWER KEY	>								
1.	(c)	7.	(d)	13.	(c)	19.	(b)	25.	(b)	
2.	(a)	8.	(b)	14.	(b)	20.	(a)	26.	(c)	
3.	(a)	9.	(b)	15.	(c)	21.	(a)	27.	(b)	
4.	(c)	10.	(a)	16.	(d)	22.	(a)	28.	(c)	
5.	(c)	11.	(a)	17.	(d)	23.	(c)	29.	(c)	
6.	(c)	12.	(a)	18.	(c)	24.	(a)	30.	(a)	

DETAILED EXPLANATIONS

1. (c)

$$\theta = \omega_0 t + \frac{1}{2}\alpha t^2$$
$$\omega_0 = 0$$
$$\theta = \frac{1}{2} \times 2 \times 10^2 = 100 \text{ rad}$$

 $\therefore \qquad \text{Number of revolutions} = \frac{100}{2\pi} = 15.92$

2. (a)

During inelatic collision, only linear momentum is conserved.

3. (a)

Change in the stored energy of rubber band = F dx $\Rightarrow \qquad dE = 300x^2 dx$ Integrating, $\int_{0}^{E} dE = \int_{0}^{0.1} 300x^2 dx$ $\Rightarrow \qquad E = 300 \times \frac{x^3}{3} \Big|_{0}^{0.1} = 0.1$ Joule

4. (c)

Kinetic energy, $KE = \frac{1}{2}I\omega^2$

$$I = \frac{mr^2}{2} = \frac{20 \times (0.2)^2}{2} = 0.4 \text{ kgm}^2$$
$$\omega = \frac{2\pi N}{60} = \frac{2 \times \pi \times 600}{60} = 62.83 \text{ rad/sec}$$
$$KE = \frac{1}{2} \times 0.4 \times (62.83)^2 \simeq 790 \text{ Joules}$$

5. (c)

...

$$F = 100\sqrt{2^2 + 3^2 + (3.464)^2} \simeq 500 \text{ N}$$
$$\cos \alpha = \frac{200}{500} = 0.4$$
$$\alpha = \cos^{-1} 0.4 = 66.42^{\circ}$$

6. (c)

 $\stackrel{\Rightarrow}{\Rightarrow} \\ \stackrel{\Rightarrow}{\Rightarrow} \\ \stackrel{\Rightarrow}{\Rightarrow}$

Let, *S* be the distance by which a pile will move under a single blow of hammer.

Work done by hammer = Work done by the ground resistance

$$\frac{1}{2}(12+4)V^2 = 200 \times S$$
$$8 \times 4^2 = 200 \times S$$
$$128 = 200 \times S$$
$$S = 0.64 \text{ m}$$

7. (d)

Given: Mass of elevator = 500 kg

Mass of operator = 100 kg

Upward acceleration = 3 m/s^2

Total tension in the cable of the elevator = $(m_1 + m_2)(g + a) = (500 + 100)(10 + 3) = 600 \times 13$ Total tension in the cable of the elevator = 7800 N = 7.8 kN

8. (b)

Given: Velocity, v = 54 kmph = $(54) \times \frac{5}{18} = 15$ m/s

Diameter, d = 1 m

Radius,
$$r = 0.5 \,\mathrm{m}$$

(i) Velocity of the top of the wheel relative to the person sitting in the carriage:

We know that the velocity of the top of the wheel (C) = 2v = 2 × 15 = 30 m/s

Velocity of the person sitting in the carriage, v = 15 m/s

Velocity of the top of the wheel relative to the person sitting in the carriage = 30 - 15 = 15 m/s

9. (b)

Work done, $dW = F \cdot dx = (10 + 0.5 \ln x) dx$

 $W = 21.079 \,\mathrm{J}$

Thus,

$$\int_{0}^{W} dW = \int_{2}^{4} (10 + 0.5 \ln x) dx$$
$$W = 10(4 - 2) + 0.5 \int_{2}^{4} \ln x dx$$
$$W = 20 + 0.5 (x \ln x - x)_{2}^{4}$$

 $W = 20 + 0.5(4 \ln 4 - 4 - 2 \ln 2 + 2)$

Taking moment about B,

$$P \times (60 + 120) = 500 \times 120 \cos 30^{\circ}$$

 $P = 288.68 \,\mathrm{N}$

www.madeeasy.in

.:.

Lasting Institute for IPS GATE & PS In

11. (a)

$$P = 10 t$$
 200 N $\mu_s = 0.4$
 $\mu_k = 0.2$

Free body diagram of the block just after limiting condition is shown below.

Now,

- $\Sigma F_y = 0$ $N_1 200 = 0$ \Rightarrow
- $N_1 = 200 \,\mathrm{N}$ \Rightarrow

$$\Sigma F_x = 0$$

$$\Rightarrow \qquad 10t - 0.2 \times 200 = m\left(\frac{dV}{dt}\right) \qquad [\because N = 200 \text{ N}]$$
$$\Rightarrow \qquad \left(\frac{dV}{dt}\right) = \frac{1}{2}(10t - 40)$$

$$\Rightarrow \qquad \left(\frac{dt}{dt}\right) = \frac{1}{m}(10t - 40)$$

$$\Rightarrow \qquad \qquad dV = \frac{1}{m}(10t - 40)dt$$

 $P - \mu_k N_1 - ma = 0$

On integrating both sides.

$$\int_{0}^{V} dV = \frac{1}{m} \int_{0}^{8} (10t - 40) dt$$
$$V = \frac{1}{m} \left(\frac{10t^{2}}{2} - 40t \right)_{0}^{8}$$

$$\Rightarrow \qquad \qquad V = \frac{1}{m}(320 - 40 \times 8)$$

$$\Rightarrow$$
 V = 0 m/s

12. (a)

 \Rightarrow

:.

$$\Rightarrow \qquad a = g \cos \theta (\tan \theta - \mu)$$
Now,
$$s = ut + \frac{1}{2}at^{2}$$

$$\Rightarrow \qquad s = 0 + \frac{1}{2}g \cos \theta (\tan \theta - \mu) \cdot t^{2}$$

$$\therefore \qquad t = \sqrt{\frac{2s}{g \cos \theta (\tan \theta - \mu)}}$$

13. (c)

Let the shortest distance between ships will occur at time thereafter the ship A passes point O.

The distance of ship A from O = 20 t

The distance of ship *B* from O = 20 (2 - t)

The distance between ships

$$D = \sqrt{(20t)^2 + \{20(2-t)\}^2}$$

For shortest distance

$$\frac{dD}{dt} = 0 \text{ or } \frac{d(D^2)}{dt} = 0$$
$$2 \times 20t - 20(2 - t) \times 2 = 0$$
$$t = 1 \text{ hrs}$$

Shortest distance = $20\sqrt{2}$ km

14. (b)

 \Rightarrow

Free body diagram of A:

$$A \rightarrow F \Rightarrow A \rightarrow 100 \text{ N}$$

$$\mu_1 m_a g \qquad 0.5 \times 10 \times 9.81$$

Writing equation of motion for A.

 $100 - 0.5 \times 10 \times 9.81 = 10a$

$$a = 5.095 \,\mathrm{m/s^2}$$

Free body diagram of *B*:

	$\mu_1 m_a \times g$		0.5 × 10 × 9.81			
	В	\Rightarrow	В			
(m+m)a		,	0.1 x 18 x 9.81			
μ_{2}	2 ('''a'' '''b) 9		0.1 ** 10 ** 5.01			

Writing equation of motion for *B*.

	49.05 – 17.658	=	8 <i>a</i>
\Rightarrow	а	=	3.924 m/s ²
After	0.1s, V _A	=	$U_a + a_a t.$
	$V_{\mathcal{A}}$	=	0 + 5.095 × 0.1
	$V_{\mathcal{A}}$	=	0.5095 m/s
Simila	arly, V _B	=	0 + 3.924 × 0.1
	V_B	=	0.3924 m/s
<i>:</i> .	Relative velocity of A w.r.t. B	=	$V_A - V_B$
		=	$0.5095 - 0.3924 \simeq 0.12$ m/s

Leading institute for IES, GATE & PSUs

15. (c)

16.

$$5g(2.1) = \frac{1}{2} \times 5 \times V^2 + \frac{1}{2} k\delta^2$$
[: $k = 10000 \text{ N/m}$]

$$\Rightarrow 10.5g = 2.5V^2 + \frac{1}{2} \times 10000 \times (0.1)^2$$

$$\Rightarrow 10.5 \times 9.81 = 2.5 V^2 + 50$$

$$V^2 = 21.202$$

$$V = 4.6 \text{ m/s}$$
(d)
(d)
(d)
$$e^{V_1} = 500 \text{ m/s}$$

$$e^{M_1 = 25 \text{ g}}$$
Before Impact
$$V_2 = 0 \text{ m/s}$$

$$e^{M_1 + M_2}$$
After Impact
$$V' = \frac{0.025 \times 500}{5 + 0.025} = \frac{12.5}{5.025} = 2.488 \text{ m/s}$$
Change in kinetic energy,
$$\Delta KE = \frac{1}{6} \times 0.025 \times 500^2 - \frac{1}{6} \times 5.025 \times 2.488^2$$

$$\Delta KE = \frac{1}{2} \times 0.025 \times 500^2 - \frac{1}{2} \times 5.025 \times 2.488$$

= 3125 - 15.55 = 3109.45 J
Percentage of energy lost = $\frac{3109.45}{3125} \times 100 = 99.5\%$

17. (d)

Considering both bars together as a free body, we see that they are in equilibrium under the action of three parallel forces i.e. weights *W* and 2*W* and the vertical reaction exerted by the string *AD*.

For equilibrium condition,

$$\Sigma M_A = 0$$

$$\Rightarrow \qquad 2W \times AE - W \times AF = 0$$

...(iii)

Now, from the geometry of the system,

$$AF = \frac{L}{2}\cos(60^\circ - \alpha) \qquad \dots (ii)$$

and

:.

From equations (i), (ii) and (iii), we get

$$\frac{L}{2}\cos(60^\circ - \alpha) = 2(L\cos\alpha - L\cos(60^\circ - \alpha))$$
$$\tan\alpha = \frac{\sqrt{3}}{5}$$
$$\alpha = 19.11^\circ$$

 $AE = (L\cos\alpha - L\cos(60^\circ - \alpha))$

18. (c)

 \rightarrow

To keep centre of mass at C

15

and

$$m_1 x_1 = m_2 x_2$$

$$m_1 (x_1 - 15) = m_2 (x_2 - d)$$

$$15 m_1 = m_2 d$$

$$d = \frac{15 \times 10}{20} = 7.5 \text{ mm}$$

19. (b)

Change in Kinetic Energy = Total work done =
$$W_{18} + W_{mg}$$

= $F.S. - mg \times s'$
= $18 \times PQ - 1 \times 10 \times OQ$
= $18 \times 5 - 10 \times 4$
= 50 J

 $\left[PQ = \sqrt{4^2 + 3^2} = 5 \,\mathrm{m} \right]$

(Let 10 kg = m_1 , 20 kg = m_2)

Change in kinetic energy is positive hence increase in kinetic energy is 50 J.

20. (a)

Since no external torque has acted, angular momentum will be conserved. Applying conservation of angular momentum,

CE • Engineering Mechanics 13

Leeding Institute for IEB, GATE & PSUe

$$\therefore \qquad I\omega = I'\omega'$$

$$MR^2 \times \omega = (MR^2 + 2mR^2)\omega'$$

$$5 \times (0.2)^2 \times 10 = [5 \times (0.2)^2 + 2 \times 0.5 \times (0.2)^2]\omega'$$

$$\Rightarrow \qquad \omega' = 8.333 \text{ rad s}^{-1}$$

$$\tan \theta = \frac{3}{4}$$

The free body diagrams of the blocks are shown below.

$$F_1 = \mu R_1 \text{ and } F'_1 = \mu R'_1$$
 ...(i)

From equilibrium of block A,

$$F - F_1 - F_1' = 0$$
 ...(ii)

and

$$R_1 - W_1 - R_1' = 0$$
 ...(iii)

 \Rightarrow

 \Rightarrow

$$R_1 = \frac{F_1}{\mu} = W_1 + \frac{F_1'}{\mu}$$
 ...(iv)

From the equilibrium of block B,

$$F_1' - S\cos\theta = 0 \qquad \dots (v)$$

and
$$R'_1 + S\sin\theta - W_2 = 0$$
 ...(vi)

$$F_1' = \frac{W_2}{1/\mu + \tan\theta} \qquad \dots (\text{vii})$$

From equations (ii), (iv) and (vii), we get

$$F = \mu W_1 + \frac{2W_2}{\frac{1}{\mu} + \tan\theta} = 0.3 \times 900 + \frac{2 \times 225}{\frac{1}{0.3} + \frac{3}{4}} = 380.2$$
N

22. (a)

$$x = 10 \sin 2t + 15 \cos 2t + 100$$

$$v = \frac{dx}{dt} = 20 \cos 2t - 30 \sin 2t$$

$$a = \frac{dv}{dt} = -40 \sin 2t - 60 \cos 2t \qquad \dots(i)$$
For a_{\max} , $\frac{da}{dt} = 0$

$$\Rightarrow -80 \cos 2t + 120 \sin 2t = 0$$

$$\tan 2t = \frac{2}{3}$$

$$\Rightarrow 2t = 33.69$$
Now using equation (i), we get
$$a_{\max} = -40 \sin (33.69) - 60 \times \cos (33.69) = -72.11 \text{ mm/s}^2$$

23. (c)

Free body diagram of beam AB,

Now using the principle of virtual work done, if C.G. of beam AB shifts by an amount 'y' then end B must shift by '2y' (using similar triangles).

 $\therefore \qquad 100 \times y - P \sin 45^{\circ} \times 2y = 0$ $\Rightarrow \qquad P = 70.71 \text{ kN}$

24. (a)

Considering velocities to the right as positive,

The initial momentum of the system =
$$\frac{W+W}{g}V_0$$

The final momentum of the car = $\frac{W}{g}(V_0 + \Delta V)$

The final momentum of the man = $\frac{W}{g}(V_0 + \Delta V - U)$

Since no external forces act on the system, the law of conservation of momentum gives,

$$\frac{W + w}{g} V_0 = \frac{W}{g} (v_0 + \Delta v) + \frac{w}{g} (v_0 + \Delta v - u)$$

$$\Rightarrow W\Delta v - wu + w\Delta v = 0$$

$$\therefore \Delta v = \frac{Wu}{W + w}$$
25. (b)
Assume, initial angular velocity = ω_0
Angular acceleration = α
Condition I:
Angular velocity after 4 sec = ω
 $\omega = \omega_0 + (\alpha t)$
 $\omega = \omega_0 + 4\alpha$
...(i)
We know that, $0 = \omega_0 t + \frac{1}{2}\alpha t^2$
 $100 = (4\omega_0) + \frac{1}{2} \times \alpha \times 4^2$
 $100 = (4\omega_0) + \frac{1}{2} \times \alpha \times 4^2$
 $100 = (4\omega_0) + \frac{1}{2} \times \alpha \times 4^2$
 $100 = (4\omega_0 + 8\alpha$
...(ii)
Condition II:
 $\theta = \omega \times t$
 $3 = \omega_0 + 4\alpha$
Multiply equation (iii) by (2),40 = $2\omega_0 + 8\alpha$
Multiply equation (iii) - oquation (v),
 $(100 - 4\omega_0 + 8\alpha) - (2\omega_0 + 8\alpha)$
 $\omega = (0) + 4\alpha$
Multiply equation (iii) - oquation (v),
 $(100 - 4\omega_0 + 8\alpha) - (2\omega_0 + 8\alpha)$
 $\omega = 2\omega_0$
Initial angular velocity, $\omega_0 = -30 \operatorname{rad/s}$
26. (c)
Given:
Mass. $m = 80000 \operatorname{kg}$,
Resistance = 2% of (80000 × 10)N
 $= \frac{2 \times 80000 \times 10}{100} = 16000 \operatorname{N} = 16 \operatorname{kN}$
Available force a Tractive force - Resistance
 $= (26 - 16) = 10 \operatorname{kN}$
Acceleration of train $= \frac{A \operatorname{vailable} \operatorname{force} mass}{80 \times 10^2} = \frac{1}{3} \operatorname{m/s^2}$
Final velocity of the train, $v = 10 \operatorname{m/s}$
 $\therefore v = u + at$
 $10 = 0 + \left(\frac{1}{8} \times t\right)$
 $t = 80 \operatorname{s}$

27. (b)

Given: $a = \frac{5}{v+3}$, where 'v' is velocity and 's' is distance.

We know that,

$$v \frac{dv}{ds} = a$$
$$\frac{vdv}{ds} = \left(\frac{5}{v+3}\right)$$
$$v(v+3)dv = 5ds$$

Integrating on both sides,

$$\left(\frac{v^3}{3} + \frac{3v^2}{2}\right) = 5s + c_1$$

$$\therefore \text{ at, } t = 0, \ s = 0 \text{ and } v = 0$$

$$\therefore \qquad 0 + 0 = 0 + c_1$$

$$\therefore \qquad c_1 = 0$$

Now,

$$\frac{v^3}{3} + \frac{3v^2}{2} = 5s$$

at, $v = 30 \text{ m/s}$

$$\frac{(30)^3}{3} + \frac{3(30)^2}{2} = 5s$$

$$\frac{(30)^3}{3} + \frac{3 \times 30^2}{2} = 5s$$

$$9000 + 1350 = 5s$$

$$s = \frac{10350}{5}$$

28. (c)

Given: $m_A = 15$ kg, $m_B = 10$ kg For mass B, $m_B g - T = m_B a$ 10g - T = 10 aFor mass A, $T = m_A a$ T = 15 aAddition equation (i) and (ii) (10g - T) + (T) = (15 + 10)a $a = \frac{10g}{25} = \frac{10 \times 10}{25} = 4 \text{ m/s}^2$ Acceleration, $a = 4 \text{ m/s}^2$

 $s = 2070 \,\mathrm{m}$

...(i)

...(ii)

Leeding Institute for IEB, GATE & PSUs

29. (c)

Given: Weight of body, W = 1000 N

Angle of plane of inclination, $\alpha = 30^{\circ}$, Angle of friction, $\phi = 15^{\circ}$

For minimum value of *P*, the body will be at the point of sliding downwards. In this condition, friction force will act in upward direction parallel to the plane.

Let, F and R are friction force and normal reactions respectively.

In equilibrium condition, $W \sin 30^\circ = P + \mu R$

$$P = W \sin 30^\circ - \mu W \cos 30^\circ$$

 $[:: \mu = tan\phi = tan15^{\circ}]$

$$= W \left[0.5 - 0.268 \times \frac{\sqrt{3}}{2} \right] = W [0.5 - 0.268 \times 0.866]$$
$$= 1000 \times 0.268$$

Minimum force required for equilibrium, P = 268 N

Alternate:

$$P_{\min} = W \frac{\sin(\alpha - \phi)}{\cos \phi}$$
$$= 1000 \times \frac{\sin(30 - 15)^{\circ}}{\cos 15^{\circ}} = 1000 \times \tan 15^{\circ}$$
$$P_{\min} = 268 \text{ N}$$

30. (a)

MOI of triangle about base AB,

$$I_1 = \frac{1}{12} \times (2r) \times (2r)^3 = \left(\frac{16}{12}\right) r^4$$

MOI of semi-circle about diameter, $I_2 = \left(\frac{1}{2}\right) \times \left(\frac{\pi}{64}\right) \times (2r)^4 = \left(\frac{\pi}{8}\right) r^4$

MOI of smaller circle about diameter, $I_3 = \left(\frac{\pi}{64}\right) r^4$

MOI of whole section about AB axis, $I = I_1 + I_2 - I_3$

$$= \left(\frac{4}{3} + \frac{\pi}{8} - \frac{\pi}{64}\right) r^4 = \left(\frac{4}{3} + \frac{7\pi}{64}\right) r^4 = \left(\frac{4}{3} + \frac{22}{64}\right) r^4 = 1.677 r^4$$