

DETAILED EXPLANATIONS

1. (c)
F_{1} covers F_{2} : True
F_{2} covers F_{1} : True
2. (b)

$$
\begin{gathered}
\pi_{A, B}(R) \bowtie_{R . B<S . B} \rho_{S(A, B)}\left(\pi_{B . C}(R)\right) \\
\begin{array}{|ll|}
\hline \boldsymbol{A} & \boldsymbol{B} \\
\hline 1 & 2 \\
3 & 2
\end{array} \left\lvert\, \begin{array}{|ll|}
\hline \boldsymbol{A} & \boldsymbol{B} \\
\hline 2 & 3 \\
2 & 1 \\
\hline
\end{array}\right.
\end{gathered} \Rightarrow \begin{array}{|llll|}
\hline \boldsymbol{A} & \boldsymbol{B} & \boldsymbol{A} & \boldsymbol{B} \\
\hline 1 & 2 & 2 & 3 \\
3 & 2 & 2 & 3 \\
\hline
\end{array}
$$

3. (a)

So, ER-diagram represents many student can enroll many courses.

- In ER-diagram Relationship set can have own attribute.
- Many to one relation can be represented the relation between non-weak entity set.

4. (b)
B^{+}tree index has more levels than B-tree index for large number of keys. Since in B-tree every key appears at only single level but which is not the case for B^{+}tree.
5. (c)

$$
\frac{(3+2+1)!}{3!\cdot 2!}=\frac{6!}{3!\cdot 2!}=60
$$

6. (d)

Both the statements are incorrect.
The select operation is commutative i.e. $\sigma_{\mathcal{C}_{1}}\left(\sigma_{c_{2}}(R)\right) \Leftrightarrow \sigma_{C_{2}}\left(\sigma_{G_{1}}(R)\right)$.
Ultimately only those tupples will be selected which satisfy both C_{1} and C_{2}. Hence order does not matter. But Π (projection) operation is not commutative.
$\left.\Pi_{a_{1}}\left(\Pi_{a_{2}}(R)\right)=\Pi_{a_{1}}(R)\right)$ if and only if a_{1} is substring (or subset) of a_{2}, otherwise operation would be incorrect.
7. (d)

The given locking protocol follows the properties of strict 2 PL which is conflict serializable, recoverable and avoid cascading rollbacks.
8. (c)

Candidate keys for the relation are: $P Q, Q S$ and $Q R$
$S \rightarrow P$, prime attribute \rightarrow prime attribute (not allowed in BCNF but allowed in 3NF).
\Rightarrow Relation R is in 3NF but not in BCNF since $S \rightarrow P$ does have a superkey on the left hand side.
9. (c)

The precedence graph of the given schedule is

Therefore schedule is equivalent to $\left(T_{1}, T_{4}, T_{3}, T_{2}\right),\left(T_{1}, T_{3}, T_{4}, T_{2}\right)$ and $\left(T_{4}, T_{3}, T_{1}, T_{2}\right)$.
10. (d)

$$
\begin{aligned}
\text { Disk block size } & =5000 \text { records } \\
\text { Block size } & =10 \text { records or } 15 \text { (keys }+ \text { Pointers) }
\end{aligned}
$$

Sparse index at $1^{\text {st }}$ level. So number of disk block at $1^{\text {st }}$ level is number of block in database.

$$
\begin{aligned}
\text { Data base } & =\frac{5000}{10}=500 \text { blocks } \\
1^{\text {st }} \text { level } & =\left\lceil\frac{500}{15}\right\rceil=\lceil 33.33\rceil=34 \text { blocks } \\
2^{\text {nd }} \text { level } & =\left\lceil\frac{34}{15}\right\rceil=\lceil 2.26\rceil=3 \text { blocks } \\
3^{\text {rd }} \text { level } & =1 \text { block } \\
\text { Total } & =[500+34+3+1] \text { blocks } \\
& =538 \text { blocks }
\end{aligned}
$$

11. (b)

T_{1}	T_{2}	T_{3}
	$S(A)$	
	$R_{2}(A)$	
$X(B)$		
$W_{1}(B)$		
$X(C)$		
$W(C)$		$S(B)$
$S(A)$		$R_{3}(B)$
$U(A)$		
	$S(B)$	
	$R_{2}(B)$	
$S(B)$		
$R(A)$		
$U(B)$		
C_{1}	$R_{2}(C)$	
	$U(A) U(B)$	
	C_{2}	$X(A)$
		$W_{3}(A)$
		$U(B) U(A)$
		C_{3}

(i) Conflict serializable

(ii) Allowed by 2PL.
(iii) Not strict recoverable.
(iv) No allowed by strict 2PL.
12. (c)

If relation R in 3NF but not BCNF then atleast two compound keys must exists where non-trivial FD with determinant not superkey.
13. (c)

The given relation with functional dependencies is in 3NF i.e., no transitive and partial function dependency exist but $C \rightarrow A$, violets BCNF i.e., super key \rightarrow any attributes. So, relation R in 3NF but not BCNF.
(d) $\{A B \rightarrow C, C \rightarrow A, B C \rightarrow D, B E \rightarrow C, E C \rightarrow A, C F \rightarrow B, D \rightarrow E\}$
14. (b)

$[A B \rightarrow C$		$[A B \rightarrow C$		$[A B \rightarrow C$
$C \rightarrow A$		$C \rightarrow A$		$C \rightarrow A$
$B C \rightarrow D$		$B C \rightarrow D$		$B C \rightarrow D$
$A C D \rightarrow B$	$\xrightarrow{\text { After }}$	$C D \rightarrow B$	After	$B E \rightarrow C$
$B E \rightarrow C$	removal of	$B E \rightarrow C$	removal of	$E C \rightarrow F$
$E C \rightarrow F$	extraneous	$E C \rightarrow F$	redundant	$C F \rightarrow B$
$E C \rightarrow A$	attributes	$E C \rightarrow A$	FD's	$D \rightarrow E]$
$C F \rightarrow B$		$C F \rightarrow B$		Minimal
$C F \rightarrow D$		$C F \rightarrow D$		cover
$D \rightarrow E]$		$D \rightarrow E]$		

15. (a)

Condition $X=X_{1}$ and $Y \neq Y_{1}$ says that vertices whose starting vertex is same but end vertices is different, which returns vertices whose out degree is atleast 2.
16. (a)
Q_{1} :Retrieves A which are more than some C.
Q_{2} :Retrieves A which are more than some C.
Q_{3} :Retrieves A which are more than every C.
17. (b)

18. (a)

Order P :

$$
\begin{aligned}
P \times \text { Pointer }+(P-1) \times \text { Key } & \leq \text { Block } \\
P \times 8+(P-1) 12 & \leq 1000 \\
20 P & \leq 1012 \\
P & =\left\lfloor\frac{1012}{20}\right\rfloor=50
\end{aligned}
$$

Level	Min nodes	Min B_{P}	Min keys
1	1	2	1
2	2	2×25	24
3	50	-	50×24
1200			

19. (a)

\# of serial schedules conflict equal to schedule (S) is \# of topological orders

$$
\left.T_{1}<\begin{array}{l}
T_{2}-T_{4}-T_{5} \\
T_{4}-T_{2}-T_{5}
\end{array}\right\} 2 \text { sequences for } T_{1} T_{2} T_{4} T_{5}
$$

T_{3} can be any where in both sequences. Total 10 topological order.
20. (b)

Order $P \Rightarrow P \times B_{P}+(P-1)$ Key \leq Block

$$
P \times 12+(P-1) 20 \leq 512
$$

$$
32 P \leq 532
$$

$$
P=\left\lfloor\frac{532}{32}\right\rfloor=16
$$

Maximum index nodes in index mean min fill factor

21. (d)

Emp (ssn, Ename, rating)
Dept_manages (did, dname, address, ssn)
Works (ssn did)
Childs belongs to (ssn name, age, gender)
22. (a)

- Only serial schedules $T_{1} \rightarrow T_{2}, T_{2} \rightarrow T_{1}$ are conflict serializable.
- None of non serial schedules are conflict serializable.

23. (b)

$$
{ }^{5} C_{2}+{ }^{5} C_{3}+{ }^{5} C_{4}+{ }^{5} C_{5}=26
$$

24. (b)

The output Table will be

Dealer-No.	Color-id
D_{2}	C_{2}
D_{7}	C_{3}
D_{2}	C_{5}
D_{7}	C_{6}

25. (a)

$$
\begin{aligned}
\text { Content of index <key, BP> } & =6+10=16 \\
\text { Block factor of database } & =\frac{512}{16}=32 \\
\text { Number of block in database } & =\frac{8192}{32}=256
\end{aligned}
$$

In first level entry for each record,

$$
\text { Number of blocks in first level }=\frac{\text { Number of Database Block }}{\text { Entry size of 1st level }}=\left\lfloor\frac{256}{32}\right\rfloor=8
$$

In second level

$$
\text { Number of blocks in second level }=\frac{\text { Number of 1st level Block }}{\text { Entry size of 2nd level }}=\left\lceil\frac{8}{32}\right\rceil=1
$$

26. (b)

Null value of B column record not references to any record of S. Remaining records of R references to atmost one record of S.
27. (c)
$\left\{t \mid \exists r \in\right.$ student $(r[$ ID $]=t[I D]) \wedge\left(\forall u \in\right.$ course $\left(u\left[d e p t _n a m e\right]=" C S " \Rightarrow \exists s \in\right.$ takes $(t[I D]=s[I D] \wedge$ $s[$ course_id] $=u[$ course_id])) $\}$ will results all students who have taken all courses offered in the CS department. Since we know that $P \Rightarrow Q \equiv$ not $P \vee Q$, so option (b) is also true.
28. (a)

In wait-die scheme, when transaction T_{i} request a data items currently held by T_{j}, T_{i} is allowed to wait only if it has a time stamp smaller then that of T_{j} otherwise T_{i} is rolled back (die). Here process P is running so it has time stamp less than process Q now if process P need a resource held by process Q then process P has to wait.
29. (d)

Checking for conflict serializable:

Cycle is present
So not conflict serialiazable

Since their is blind write between $W_{2}(a)$ to $W_{3}(a)$, so it may be view serializable.
Checking for view serializability:

1. Final write:

$$
\begin{equation*}
a=T_{1}, b=T_{3} \tag{1}
\end{equation*}
$$

2. Initial read: $\quad a=T_{1}, T_{2} b=T_{3}, c=T_{1}$
3. Write read: No write read

$$
\begin{align*}
\left(T_{2}, T_{3}\right) & \rightarrow T_{1} \\
T_{1} & \rightarrow T_{2}, T_{3} \tag{2}
\end{align*}
$$

from (1)

Both at a time not possible, so not view serializable.
30. (b)

If we insert keys $45,48,55$ in same order, then on insertion of key 55 , root will be overflow and new level will be created.

