ESE GATE PSUs State Engg. Exams ## WORKDOOK 2025 ## **Detailed Explanations of Try Yourself** *Questions* ### **Civil Engineering** **Environmental Engineering** ### **Water Demand** ## **Detailed Explanation**of Try Yourself Questions #### T1: Solution #### (i) Arithmetic increase method | Year | Population (thousands) | Increase | |------|------------------------|----------| | 2010 | 26 | 3 | | 2011 | 29 | 6 | | 2012 | 35 | 8 | | 2013 | 43 | 1 | | 2014 | 47 | 4 | $$\bar{x} = 5.25$$ $$P_{2020} = P_{2014} + 6\overline{x}$$ = 47000 + 6 (5250) = 78500 #### (ii) Geometric increase method | Year | Population (thousands) | Increase | Growth rate | |------|------------------------|----------|---------------------------| | 2010 | 26 | 3 | 3/26 × 100 = 11.5 | | 2011 | 29 | 6 | $6/29 \times 100 = 20.68$ | | 2012 | 35 | 8 | $8/35 \times 100 = 22.8$ | | 2013 | 43 | 4 | $4/43 \times 100 = 9.3$ | | 2014 | 47 | | | r = 16.07% Population in 2020, $$P_{2020} = P_{2014} + (1 + r)^6$$ = 47 + (1 + 0.1607)⁶ = 114.5 thousands #### (iii) Incremental increase method | Year | Population (thousands) | Increase | Increase in increase | |------|------------------------|----------|----------------------| | 2010 | 26 | 3 | | | 2011 | 29 | 6 | 3 | | 2012 | 35 | 8 | 2 | | 2013 | 43 | 1 | -4 | | 2014 | 47 | 4 | | | - | | | | $$y = 0.33$$ $$P_{2020} = P_{2014} + 6\overline{x} + \frac{6(6+1)}{2}y$$ $$= 47 + 6x (5.25) + 21 (0.33)$$ $$= 85.43 \text{ thousands}$$ #### T2: Solution Given. $$P_0 = 40000, t = 0$$ $P_1 = 160000, t_1 = 20$ $P_2 = 280000, t_2 = 40$ (i) By logistic curve method. Saturation population, $$P_s = \frac{2P_0 P_1 P_2 - P_1^2 (P_0 + P_2)}{P_0 P_2 - P_1^2}$$ Substituting the value of $P_{\rm 0}$, $P_{\rm 1}$ and $P_{\rm 2}$ in above equation, we get $$P_s = \frac{2 \times 40000 \times 160000 \times 280000 - (160000)^2 (40000 + 280000)}{40000 \times 280000 - (160000)^2}$$ $$= 320000$$ (ii) Using logistic curve method, where, $$P = \frac{P_s}{1 + m \log_e^{-1}(nt)}$$ $$m = \frac{P_s - P_0}{P_0} = \frac{320000 - 40000}{40000} = 7$$ and $$n = \frac{2.3}{t_1} \log_{10} \left[\frac{P_0(P_s - P_1)}{P_1(P_s - P_0)} \right]$$ $$= \frac{2.3}{20} \log_{10} \left[\frac{40000(320000 - 160000)}{160000(320000 - 40000)} \right] = -0.097$$ $$P = \frac{320000}{1 + 7 \log_e^{-1}(-0.097 t)}$$ #### (iii) When t = 55 years, then $$P = \frac{320000}{1 + 7\log_e^{-1}(-0.097 \times 55)} = \frac{320000}{1 + 7\log_e^{-1}(-5.335)}$$ Let, $$x = \log_e^{-1}(-5.335)$$ $$\therefore P = \frac{320000}{1 + 7x}$$ Now, we find out the value of x $$x = \log_{e}^{-1}(-5.335)$$ $$\log_{e} x = -5.335$$ or $$2.3 \log_{10} x = -5.335$$ $$\log_{10} x = \frac{-5.335}{2.3} = -2.319$$ $$x = 0.004797$$ Substituting the value of x in equation (iii), we get $$P = \frac{320000}{1 + 7 \times 0.004797} = 309604$$ Hence, the population after 15 more years will be ## Sources of Water Supply & Well Hydraulics #### T1: Solution Dia. of well = $$60 \text{ mm}$$ $\therefore r_w = 30 \text{ cm}$ $$Q = 1360 lit/min$$ $$r_1 = 6 \text{ m}$$ $s_1 = 6 \text{ m}$ $$r_2 = 15 \,\text{m}$$ $s_2 = 1.5 \,\text{m}$ Discharge as per theims theory in unconfined aquifer $$Q = \frac{\pi k (h_2^2 - h_1^2)}{2.306 \log_{10} \left(\frac{r_2}{r_1}\right)}$$ $$h_1 = H - s_1 = 90 - 6 = 84 \text{ m}$$ $h_2 = H - s_2 = 90 - 1.5 = 88.5 \text{ m}$ $$\frac{1360 \times 10^{-3}}{60} = \frac{\pi \times k \times \left(88.5^2 - 84^2\right)}{2.303 \times \log_{10}\left(\frac{15}{6}\right)}$$ $$k = 8.5 \times 10^{-6} \,\text{m/sec}$$ To find drawdown (h₀) $$Q = \frac{\pi k (h_1^2 - h_0^2)}{2.303 \log_{10} \left(\frac{r_1}{r_w}\right)}$$ $$\frac{1360 \times 10^{-3}}{60} = \frac{\pi \times 8.5 \times 10^{-6} \left(84^2 - h_0^2\right)}{2.303 \times \log_{10} \left(\frac{6}{0.3}\right)}$$ $$h_0 = 67.2 \,\mathrm{m}$$ $$s = 22.8 \, \text{m}$$ $$Q = \frac{\pi k (H^2 - h_0^2)}{2.306 \log_{10} (\frac{R}{r_w})}$$ $$\frac{1360 \times 10^{-3}}{60} = \frac{\pi \times 8.5 \times 10^{-6} \times (90^2 - 67.2^2)}{2.306 \log_{10} \left(\frac{R}{30 \times 10^{-2}}\right)}$$ $$\log_{10}\left(\frac{R}{30\times10^{-2}}\right) = 1.8104$$ $$R = 20.5 \, \text{m}$$ For specific capacity using Dupit theory, $$SC = \frac{\pi k \left(H^2 - h_0^2\right)}{2.306 \log \left(\frac{R}{r_w}\right)}$$ $$s = 1; H = 90$$ $$h_0 = (90 - 1) = 89 \text{ m}$$ SC = $$\frac{\pi \times 8.5 \times 10^{-6} \times (90^{2} - 89^{2})}{2.306 \times \log(\frac{20.5}{30 \times 10^{-2}})}$$ $$= 1.13 \times 10^{-3} \,\mathrm{m}^3/\mathrm{sec}$$ To find max. discharge, $$h_0 = 0$$ $$Q_{\text{max}} = \frac{\pi k(H^2)}{2.306 \log_{10} \left(\frac{R}{L}\right)}$$ $$= \frac{\pi \times 8.5 \times 10^{-6} \times 90^2}{2.306 \log \left(\frac{20.5}{0.3}\right)}$$ $$= 0.051 \text{ m}^3/\text{sec} = 30.78 \text{ L/min}.$$ #### T2: Solution Given that, $$s_1 = 4 \text{ m}; s_2 = 3 \text{ m}$$ We know that, $$q = \frac{2\pi \text{kB}(s_1 - s_2)}{2.303 \log_{10} \left(\frac{r_2}{r_1}\right)} \qquad [\because \text{kB} = 7]$$ $$\Rightarrow \qquad q = \frac{2\pi T(s_1 - s_2)}{2.303 \log_{10} \left(\frac{r_2}{r_1}\right)} \Rightarrow 0.1 = \frac{2\pi T(4 - 3)}{2.303 \log_{10} \left(\frac{60}{10}\right)}$$ $$\Rightarrow \qquad T = \frac{2.303 \times 0.1 \times \log_{10} 6}{2\pi} \Rightarrow T = 0.0285 \text{ m}^2/\text{sec}$$ $$\therefore \qquad k = \frac{T}{B} = \frac{0.0285}{20} = 1.425 \times 10^{-3} \text{ m/sec}$$ Again, $$q = \frac{2\pi T(s_w - s_1)}{2.303 \log_{10} \left(\frac{r_1}{r_w}\right)}$$ where, $$s_w \text{ is drawdown in well}$$ $$r_w \text{ is radius of well} = \frac{0.5}{2} = 0.25 \text{ m}$$ $$\therefore \qquad 0.1 = \frac{2\pi \times 0.0285 \times (s_w - 4)}{2.303 \log_{10} \left(\frac{10}{0.25}\right)}$$ $$\Rightarrow \qquad s_w = \frac{0.1 \times 2.303 \times \log_{10} 40}{2\pi \times 0.0285} + 4 = 6.06 \text{ m}$$ Thus, coefficient of permeability of test well, $k = 1.425 \times 10^{-3}$ m/s and drawdown in the test well, $s_w = 6.06$ m. Darcy's law is valid only for saturated soils in which laminar flow condition prevails. The Reynolds number should be less than 1 for laminar flow conditions in soils. According to William Hazen for laminar flow diameter of soil grains should be less than or equal to 3 mm. #### T3: Solution Given data: $$Q = 1500 \text{ litres per minute} = \frac{1500 \times 10^{-3}}{60} \text{ m}^3/\text{s} = 0.025 \text{ m}^3/\text{s}$$ $$r_1 = 6 \text{ m}, s_1 = 6 \text{ m}$$ $$r_2 = 16 \text{ m}, s_2 = 2 \text{ m}$$ $$H = 100 \text{ m}$$ $$\therefore h_1 = H - s_1 = 100 - 6 = 94 \text{ m}$$ $$h_2 = H - s_2 = 100 - 2 = 98 \text{ m}$$ Using Thiem's equation for unconfined aguifers, we have $$Q = \frac{\pi k \left(h_2^2 - h_1^2\right)}{2.303 \log_{10}\left(\frac{r_2}{r_1}\right)} \quad \Rightarrow \quad 0.025 = \frac{\pi k \left(98^2 - 94^2\right)}{2.303 \log_{10}\left(\frac{16}{6}\right)}$$ \Rightarrow $\pi k = 3.193 \times 10^{-5} \Rightarrow k = 1.016 \times 10^{-5} \text{ m/s}$ Thus the coefficient of permeability, $k = 1.016 \times 10^{-5}$ m/s Radius of gravity well, $$r_w = \frac{0.5}{2} = 0.25 \text{ m}$$ Using Theim's equation again, we get $$Q = \frac{\pi k \left(h_1^2 - h_w^2\right)}{2.303 \log_{10}\left(\frac{r_1}{r_w}\right)} \quad \Rightarrow \quad 0.025 = \frac{3.193 \times 10^{-5} \times (94^2 - h_w^2)}{2.303 \log_{10}\left(\frac{6}{0.25}\right)}$$ $$\Rightarrow$$ $$2488.3 = 94^2 - h_w^2$$ $$\Rightarrow$$ $$h_{\rm w} = 79.67 \,\rm m$$ \therefore Drawdown in the pumped well = $H - h_w = 100 - 79.67 = 20.33 m$ #### **T4**: Solution Diameter of tube well = 200 mm Spacing between tube wells = 150 m Radius of influence, R = 200 m $$\therefore$$ Radius of tube well, $r_w = \frac{200}{2} = 100 \text{ mm}$ The discharge from a fully penetrating tubewell in a confined aquifer is given by $$Q_1 = \frac{2\pi k Hs}{2.3 \log_{10} \left(\frac{R}{r_w}\right)}$$ where, H = thickness of confined aquifer s = drawdown k = coefficient of permeability The discharge from two tubewells at a distance B apart is given by $$Q_2 = Q_3 = \frac{2\pi k Hs}{2.3 \log_{10} \left(\frac{R^2}{r_w B}\right)}$$.. Total discharge from both wells, $$Q_4 = Q_2 + Q_3 = \frac{2 \times 2\pi \text{ kHs}}{2.3 \log_{10} \left(\frac{R^2}{Br_w}\right)}$$ $$\frac{Q_1}{Q_4} = \frac{\log_{10}\left(\frac{R^2}{Br_w}\right)}{2\log_{10}\left(\frac{R}{r_w}\right)}$$ $$\Rightarrow$$ $$\frac{Q_1}{Q_4} = \frac{\log_{10}\left(\frac{200^2}{150 \times 100 \times 10^{-3}}\right)}{2\log_{10}\left(\frac{200}{100 \times 10^{-3}}\right)} \Rightarrow \frac{Q_1}{Q_4} = 0.52$$ #### **T5**: Solution The flow will be spherical for the partially penetrated well. Since, flow is spherical, therefore the flow area, $$A = 2\pi r_w^2$$ (Surface area of a hemi sphere) $Q_s = \text{vA}$ $Q_c = \text{kiA}$ Discharge, $$\Rightarrow$$ $$S_{W} \sim S_{W}$$ $$Q_{s} = k \times \frac{s_{w}}{r_{w}} \times 2\pi r_{w}^{2}$$ $$\Rightarrow$$ $$Q_s = 2\pi \, k \, s_w \, r_w$$ $$\Rightarrow$$ $$s_{_W} = \frac{Q_{_S}}{2\pi k r_{_W}}$$ $$Q_s = 2\pi k r_w s_w = 2\pi r_w k (H - h_w)$$...(i) But, discharge through a fully penetrating well in confined aquifer under steady state condition is given by $$Q_{r} = \frac{2\pi \, kB \left(H - h_{w}\right)}{2.303 \log_{10} \left(\frac{R}{r_{w}}\right)} \qquad ...(ii)$$ where, B isthickness of confined aguifer H isinitial height of water table from bottom of well $h_{_{W}}$ is artesian pressure in the well R is radius of influence r_{w} is radius of well $s_w = \text{Drawdown in the well} = H - h_w$ Dividing (i) by (ii), we get $$\frac{Q_s}{Q_r} = \frac{2\pi \, r_w k \, (H - h_w)}{2\pi k B \, (H - h_w) \, / \, 2.303 \, log_{10} \left(\frac{R}{r_w}\right)}$$ $$\Rightarrow$$ $$\frac{Q_s}{Q_r} = \frac{\left[2.303 \log_{10} \left(\frac{R}{r_w}\right)\right] \times r_w}{R}$$ $$\Rightarrow$$ $$\frac{Q_s}{Q} = 2.303 \left(\frac{r_w}{B}\right) \log_{10} \left(\frac{R}{r_w}\right)$$ (i) $$Q = \frac{2\pi k H \cdot S}{2.303 \log_{10} (r/r_w)}$$ where, H = thickness of the confined aquifer; S = drawdown; r = radius of circle of influence; $r_w =$ radius of the well $$\therefore \qquad
2000 = \frac{2\pi \times 30 \times 15 \cdot S}{2.303 \log_{10} (135/0.15)} = \frac{2827.43}{6.80} \cdot S$$ $$S = \frac{2000 \times 6.80}{2827.43} = 4.81 \text{ m}$$ (ii) $$Q = \frac{2\pi k H S}{2.303 \log_{10} (r/r_w)}$$ Putting numerical values, $$Q = \frac{2\pi \times 21 \times 15 \times 2}{2.303 \log_{10} (400 / 0.05)} = \frac{1718.8}{\log_{10} (8000)} = \frac{1718.8}{3.903}$$ = **440.40 m³/day** $$Q_1 = Q_2 = Q_3 = \frac{2\pi kD(H - h)}{2.3 \log_{10}(R^3/rL^2)}$$ Using this equation and putting numerical values $$Q_1 = Q_2 = Q_3 = \frac{2\pi \times 21 \times 15 \times 2}{2.303 \log_{10} \left(\frac{400^3}{0.05 \times 15^2}\right)} = \frac{3958.4}{15.56} = 254.5 \text{ m}^3/\text{day}$$ Hence, percentage reduction in discharge = $\frac{(440.4 - 254.4)}{440.4} \times 100 = 42.23\%$ (iii) $$Q = \frac{2\pi kHS}{2.303 \log_{10} (R/r_w)}$$ or $$0.10 \times 60 \times 60 \times 24 = \frac{2\pi \times 60 \times 30 \times 5}{2.303 \log_{10} (280/r_w)} = \frac{24554}{\log_{10} (280/r_w)}$$ or $$log_{10} \left(\frac{280}{r_w}\right) = \frac{24554}{8640} = 2.842$$ $$\frac{280}{r_w} = 10^{2.842}$$ $$r_w = 0.40 \text{ m} = 40 \text{ cm}$$ ## **Quality Characteristics of Water** #### T1: Solution Hardness is due to multixalent cations. Total hardness in mg/l as CaCO₃ $$= \left[\text{Ca}^{++} \text{ in mg/}l \times \frac{\text{Combining weight of CaCO}_3}{\text{Combining weight of Ca}^{++}} \right]$$ + $$\left[\text{Mg}^{++} \text{ in mg/}l \times \frac{\text{Combining weight of CaCO}_3}{\text{Combining weight of Mg}^+} \right]$$ $$= \left[50 \times \frac{50}{20} + 72 \times \frac{50}{12}\right] = 125 + 300 = 425 \text{ mg/l}$$ ### **Treatment of Water** #### T1: Solution $\rm FeSO_4$.7 $\rm H_2O$ and $\rm Ca(OH)_2$ are added in 1 mole each, having their molecular weight as 278 and 112 respectively Thus, 1 gm of Ferrous sulphate $$=\frac{112}{278}$$ = 0.403 gm of lime So, 1 mg/L = 0.403 mg/L of ferrous sulphate of lime \Rightarrow 12 mg/L = 12 × 0.403 = 4.836 mg/L of lime \Rightarrow Total lime required = $4.836 \times 16 = 77.38 \text{ kg/day}$ #### T2: Solution Let us assume d < 0.1 mm Setling velocity, $$V_s = 418(G-1)d^2\left(\frac{3T+70}{100}\right)$$ $$V_S = \frac{10 \times 10^6 \times 10^{-3} \times 10^3}{300 \times 24 \times 3600} \text{mm/s} = 418(2.65 - 1)d^2 \left(\frac{3 \times 26 + 70}{100}\right)$$ $$\Rightarrow \qquad \qquad a^2 = \frac{0.3858}{1020.75}$$ $$\Rightarrow$$ $d = 0.01944 \,\mathrm{mm}$ Hence our assumption is correct. #### T3: Solution Total surface area = $$\frac{\text{Design flow rate}}{\text{Design loading rate}} = \frac{0.5}{200/(24 \times 60 \times 60)}$$ = $\frac{24 \times 60 \times 60 \times 0.5}{200} = 216 \text{ m}^2$ #### T4: Solution Number of filters = $$\frac{\text{Total surface area}}{\text{Surface area of each filter box}}$$ = $\frac{216}{50}$ = $4.32 \simeq 5$ Provide one additional filter as a stand-by filter to be used during cleaning, maintenance, etc. Hence, number of filters = 5 + 1 = 6. #### **T5**: Solution The disinfection of industrial water supplies is necessary in food processing, distillery (alcohol), etc. #### T6: Solution $$Q_0 = 25000 \,\mathrm{m}^3/\mathrm{d}$$ Chlorine usage = $$\frac{9 \times 10^6}{25000 \times 10^3}$$ = 0.36 mg/l Chlorine usages = chlorine demand + residual chlorine 0.36 = chlorine demand + 0.2 Chlorine demand = 0.36 - 0.2 = 0.16 mg/l #### **T7: Solution** Total water to be filtered $$= 99 \times 1.05 \text{ MLD} = 103.95 \text{ MLD}$$ (Addition of 5% to be used for backwashing) $$\frac{L}{B}$$ = 1.35 where *B* = 5.2 m ∴. $$L = 7.02 \text{ m}$$ Surface area of each filter = 36.504 m^2 Total surface area required $$= \frac{\text{Discharge through filter}}{\text{Rate of filtration}}$$ $$= \frac{103.95 \times 10^3}{6 \times 24} = 721.875 \,\mathrm{m}^2$$ Total no. of working units required $$=\frac{721.875}{36.504}$$ = 19.77 filters = 20 filters 1 unit is to added as standby, thus total no. of units required = 21 #### T8: Solution Flow rate, $$Q_0 = 0.2 \text{ m}^3/\text{sec}$$ (PA) = LB = 32 × 8 = 256 m² Plan area, $$(PA) = LB = 32 \times 8 = 256 \text{ m}$$ (OFR) over flow rate $$=\frac{Q_0}{PA}=\frac{0.2}{256}=7.8125\times 10^{-4}\,\text{m/s}$$ Now, settling velocity of particle of size 25 $\mu\mathrm{m}$ be u_s $$u_{s} = \frac{(G-1)\gamma_{w}d^{2}}{18\mu}$$ $$= \frac{(2.5-1)9.81 \times 10^{-3} (25 \times 10^{-6})^{2}}{18 \times 0.01 \times 10^{-3} \times 10^{2}}$$ $$= 5.10 \times 10^{-4} \text{ m/sec}$$ $$\eta_{\text{removal}} = \frac{u_{s}}{OFR} \times 100$$ $$= \frac{5.10 \times 10^{-4}}{7.8125 \times 10^{-4}} \times 100 = 65.28\% \simeq 65\%$$ #### **T9: Solution** During disinfection variations of micro-organism is given by $$N_t = N_0 e^{-kt}$$ $N_t = \text{No. of micro-organism at time } t$ $N_o = \text{No. of micro-organism at time 0}$ So, disinfection efficiency at any time 't', $$\eta_t = \frac{N_o - N_t}{N_o} \times 100$$ For $$t = 3 \text{ min}; \ \eta_3 = 50\%$$ $$t = 3 \text{ min; } \eta_3 = 50\%$$ $\eta_3 = \frac{N_o - N_o e^{-k \times 3}}{N_o} \times 100 = 50$ $k = 0.231 \text{ min}^{-1}$ Now for $$\eta_t = 99\%$$ $$\eta_t = \frac{N_o - N_t}{N_o} \times 100 = 99$$ $$\frac{N_o - N_o e^{-0.231 \times t}}{N_o} \times 100 = 99; \quad t = 19.93 \text{ min}$$ #### T10: Solution Using principle of gram equivalent, 1 gm - equivalent of calcium as calcium carbonate will react with 1 gm-equivalent of lime. Now, equivalent weight of calcium carbonate = 50 gm Equivalent weight of lime = 28 gm So, 50 g of calcium carbonate require = 28 gm of lime Hence, 72 mg/L of calcium carbonate require = $\frac{28 \times 72}{50}$ = 40.32 mg/L of lime But, as the lime is 82% pure, therefore requirement of lime is $\left(\frac{40.32}{0.82}\right)$ i.e. 49.17 mg/L. #### **T11: Solution** **Type-I Settling:** Particles whose shape, size, specific gravity do not change with time are called as "DISCRETE PARTICLES" and particles whose surface properties are such that they coalesce/combine with other particles upon contact thereby changing shape, size and specific gravity of particles are called "FLOCCULATING PARTICLES" settling of discrete particles in dilute suspension is called as Type-I settling. When a particle is suspended in water, initially it has only two forces acting upon it viz. - 1. Force of gravity = $F_g = \rho_p V_p g$ Where ρ_p and V_p are density and volume of particles respectively. - 2. Buoyant force = $F_B = \rho_w V_p g$ Where ρ_w is the density of water. Now, $F_q = F_B$ is $\rho_p = \rho_w$ and no acceleration of the particles will take place. If $\rho_p \neq \rho_w$ which usually always happens, a net force acts on the particles and particle accelerates in the direction of net force (F_{net}). Thus, $F_{net} = (\rho_p - \rho_w)g V_p = Driving$ force for acceleration. Once motion of particles has started, a third force come into play due to viscous friction. This force is called as "DRAG FORCE" (F_D) , given by $$F_D = \frac{1}{2} C_D A_P \rho_w V_P^2$$ Where $$C_D = \text{Drag coeff.}$$ $$\therefore \qquad (\rho_P - \rho_w) g \ V_P = \frac{1}{2} C_D A_P \rho_w V_P^2$$ For spherical particles, $$\frac{V_P}{A_P} = \frac{\frac{\pi}{6} d^3}{\frac{\pi}{4} d^2} = \frac{2}{3} d$$ $$\therefore \qquad V_P^2 = \frac{4}{3} g \frac{(\rho_P - \rho_w) d}{C_D f_w} \qquad ...(i)$$ Drag coeff. $$(C_D) = \begin{bmatrix} \frac{24}{\text{Re}} \text{ for laminar flow.} \\ 0.4 \text{ for turbulent flow.} \end{bmatrix}$$ Here $Re = \text{Reynold's no.} = \frac{v\rho_w d}{\mu}$ Substuting $$C_D$$ in (i), $$v = \frac{g d^2 \rho_W (G-1)}{18 \mu}$$ $G = \text{Sp. gravity of particles.}$ $$d = 4 \times 10^{-3} \text{ cm/s} = 4 \times 10^{-5} \text{ m/s}, \ G = 2.65$$ Assuming laminar flow, $v = \frac{9.81 (16 \times 10^{-10})(2.65 - 1)}{18 \times 1.02 \times 10^{-6}} = 14.106 \times 10^{-4} \text{ m/s}$ $$Re = \frac{14.106 \times 10^{-4} \times 4 \times 10^{-5}}{1.02 \times 10^{-6}} = 55.318 \times 10^{-3} < 1$$ ⇒ Assumptions of laminar flow is true. #### **T12: Solution** n' = Porosity of expanded bed $$n' = \left(\frac{V_B}{V_s}\right)^{0.22}$$ $$0.65 = \left(\frac{V_B}{4.5 \text{ cm/s}}\right)^{0.22}$$ $$V_B = 6.35 \times 10^{-3} \text{ m/s}$$ ### **Distribution System** #### T1: Solution | Time
(Hour) | Cumulative
Demand (ML) | Cumulative
Supply | (i)
Cumulative
Supply – demand | Cumulative
Supply | (ii)
Cumulative
Supply – demand | |----------------|---------------------------|----------------------|--------------------------------------|----------------------|---------------------------------------| | 0 - 2 | 0.450 | 3 | 2.55 | 0 | -0.45 | | 2 - 4 | 0.975 | 6 | 5.025 | 0 | -0.975 | | 4 - 6 | 1.95 | 9 | 7.05 (A) | 6 | 4.05 | | 6 - 8 | 4.95 | 12 | 7.05 | 12 | 7.05 (A) | | 8 - 10 | 10.95 | 15 | 4.05 | 18 | 7.05 | | 10 - 12 | 16.50 | 18 | 1.50 | 18 | 1.50 | | 12 - 14 | 19.20 | 21 | 1.80 | 18 | –1.20 (B) | | 14 - 16 | 21.75 | 24 | 2.25 | 24 | 2.25 | | 16 - 18 | 26.20 | 27 | 0.3 | 30 | 3.30 | | 18 - 20 | 31.70 | 30 | -1.80 | 36 | 4.20 | | 20 - 22 | 35.80 | 33 | –2.1 (B) | 36 | 0.90 | | 22 - 44 | 36.00 | 36 | 0 | 36 | 0 | (i) If pumping is constant Rate of supply = $$\frac{36}{24}$$ = 1.5 ML/hr Balancing storage = A + B = 7.05 + 2.1 = 9.15 ML (ii) Intermittant supply Rate of supply = $$\frac{36}{12}$$ = 3 ML/hr Balancing storage = A + B = 7.05 + 1.2 = 8.25 ML CCCC ## Quality, Characteristics and Biochemical Reactions of Waste Water #### T1: Solution Given $$[BOD_4]_{20^{\circ}C} = \frac{75}{100} \times BOD_u$$ We know, $$[BOD_t]_{T^{\circ}C} = BOD_u \Big[1 - 10^{-K_D \times t} \Big]$$ $$[BOD_4]_{20^{\circ}C} = BOD_u \Big[1 - 10^{-K_D \times 4} \Big]$$ $$\Rightarrow \frac{75}{100} \times BOD_u = BOD_u \Big[1 - 10^{-4K_D} \Big]$$ $$\Rightarrow 0.75 = 1 - 10^{-4K_D} \Rightarrow 10^{-4K_D} = 0.25$$ Taking \log_{10} both sides $$\Rightarrow -4 K_D = -0.6020$$ $$\therefore K_D = 0.1505 \text{ day}^{-1}$$ #### T2: Solution "Bio-chemical oxygen demand (BOD) is used as a measure of the quantity of oxygen
required for oxidation of bio-degradable organic matter present in wastewater sample by aerobic bio-chemical action". #### Determination of BOD₅: The standard 5 day BOD (BOD $_5$) is determined in the laboratory by mixing a known volume of a sample of wastewater with known volume of pure water and calculating the dissolved oxygen (D.O.) of this diluted sample. The diluted sample is then incubated for 5 days at 20°C. The dissolved oxygen (D.O.) of the diluted sample, after this period of incubation is again calculated. Then BOD $_5$ in mg/l is calculated as $$\mathsf{BOD}_5 = \left(\mathsf{D.O}_i - \mathsf{D.O}_f\right) \times \frac{\mathsf{Vol.} \, \mathsf{of} \, \mathsf{the} \, \mathsf{diluted} \, \mathsf{sample}}{\mathsf{Vol.} \, \mathsf{of} \, \mathsf{the} \, \mathsf{undiluted} \, \mathsf{sewage} \, \mathsf{sample}}$$ where, $$\mathsf{D.O}_i = \, \mathsf{initial} \, \mathsf{D.O.} \, \mathsf{of} \, \mathsf{diluted} \, \mathsf{sample}$$ $$\mathsf{D.O}_i = \, \mathsf{Final} \, \mathsf{D.O.} \, \mathsf{of} \, \mathsf{diluted} \, \mathsf{sample} \, \mathsf{after} \, \mathsf{5} \, \mathsf{days} \, \mathsf{incubation} \, \mathsf{at} \, \mathsf{20^{\circ}C}$$ Given, $$\mathsf{Vol.} \, \mathsf{of} \, \mathsf{Waste} \, \mathsf{water} \, = \, \mathsf{5} \, \mathsf{m} \mathit{l}$$ $$\mathsf{D.O.} \, \mathsf{of} \, \mathsf{waste} \, \mathsf{water} \, = \, \mathsf{0} \, \mathsf{mg} \mathit{l} \mathit{l}$$ $$\mathsf{Vol.} \, \mathsf{of} \, \mathsf{pure} \, \mathsf{water} \, = \, \mathsf{300} - \mathsf{5} \, = \, \mathsf{295} \, \mathsf{mg} \mathit{l} \mathit{l}$$ $$\mathsf{D.O.} \, \mathsf{of} \, \mathsf{pure} \, \mathsf{water} \, = \, \mathsf{9.2} \, \mathsf{mg} \mathit{l} \mathit{l}$$ $$\mathsf{D.O.} \, \mathsf{of} \, \mathsf{diluted} \, \mathsf{sample}, \, \mathsf{D.O}_i \, = \, \frac{\mathit{V}_{\mathsf{waste}} \times \mathsf{BOD}_5 + \mathit{V}_{\mathsf{pure}} \times \mathsf{BOD}_5}{\mathit{V}_{\mathsf{waste}} + \mathit{V}_{\mathsf{pure}}}$$ $$= \frac{5 \times 0 + 295 \times 9.2}{300} = 9.05 \,\mathrm{mg}/l$$ After incubating the bottle for 5 day, D.O. of mixture was found 5.0 mg/l $$\therefore \qquad \qquad \mathsf{D.O}_f = 5.0 \; \mathsf{mg/}l$$ $$\therefore \qquad \mathsf{BOD}_5 = \left(\mathsf{D.O}_i - \mathsf{D.O}_\mathsf{f}\right) \times \frac{\mathsf{Vol.\,of\,diluted\,sample}}{\mathsf{Vol.\,of\,undiluted\,sewage\,sample}}$$ = $$(9.05 - 5.0) \times \frac{300}{5}$$ = 242.8 mg / L ### **Disposal of Sewage Effluents** #### T1: Solution Per capita BOD of the domestic sewage = $72 \text{ gm/day} = 72 \times 10^3 \text{ mg/day}$ Per capita sewage produced = 240 lit/day ∴ BOD per litre of the domestic sewage = $$\frac{72 \times 10^3}{240}$$ = 300 mg/L Amount of domestic waste water produced per day = $30000 \times 240 = 7.2 \times 10^6$ litres ∴ Net BOD of all waste waters (domestic + industrial) = $$\frac{7.2 \times 300 + 4 \times 1500}{7.2 + 4}$$ = 728.57 mg/L Total waste water discharge = $$\frac{(7.2 + 4) \times 10^6}{24 \times 60 \times 60}$$ = 129.63 lit/sec Total waster water discharge with 10% expansion = $129.63 + \frac{10}{100} \times 129.63 = 142.593$ lit/sec Now, Initial DO of saturated stream water = 7 mg/L Assuming that the DO of waste water is nil, at the starting point. $$DO \text{ of the mixture} = \frac{DO \text{ of river} \times Q_r + DO \text{ of sewage} \times Q_s}{Q_r + Q_s}$$ where $Q_r = 4500$ lit/sec; $Q_s = 142.593$ lit/sec $$DO \text{ of mixture} = \frac{7 \times 4500 + 0 \times 142.593}{4500 + 142.593} = 6.785 \text{ mg/L}$$:. Initial deficit in $$DO = D_o = 7 - 6.785 = 0.215 \text{ mg/L}$$ Given that $$f = \frac{k_R}{k_D} = \frac{0.3}{0.1} = 3$$ $$D_c = 7 - 4 = 3 \text{ mg/L}$$ $D_0 = 0.215 \text{ mg/L}$ We know that $$\left[\frac{L_{o}}{D_{c}f}\right]^{f-1} = f\left[1 - (f-1)\frac{D_{o}}{L_{o}}\right]$$ $$\Rightarrow$$ $$\left(\frac{L_0}{3\times3}\right)^{3-1} = 3\left[1-(3-1)\times\frac{0.215}{L_0}\right]$$ $$\frac{L_{0}^{2}}{81} = 3 \left[1 - \frac{0.43}{L_{0}} \right]$$ $$\Rightarrow \frac{L_{0}^{2}}{3 \times 81} = \frac{L_{0} - 0.43}{L_{0}}$$ $$\Rightarrow L_{0}^{3} = 243L_{0} - 104.49$$ $$\Rightarrow L_{0}^{3} - 243L_{0} + 104.49 = 0$$ $$\Rightarrow L_{0} = 15.37 \text{ mg/L}$$ Maximum permissible 5 day BOD of the mix at mix temperature $$= L_{0} \left[1 - 10^{-k_{D}t} \right] = 15.37 \left[1 - 10^{-0.1 \times 5} \right] = 10.51 \text{ mg/L}$$ $$Again BOD_{\text{mix}} = \frac{C_{s} \times Q_{s} + C_{r} Q_{r}}{Q_{s} + Q_{r}}$$ $$\Rightarrow 10.51 = \frac{C_{s} \times 142.593 + 0 \times 4500}{142.593 + 4500}$$ $$\text{where} \qquad C_{s} = \text{Maximum permissible BOD}_{s} \text{ of waste water}$$ $$\Rightarrow C_{s} = \frac{10.51 \times (142.593 + 4500)}{142.593}$$ $$\Rightarrow C_{s} = 342.19 \text{ mg/L}$$ $$\therefore \text{ Degree of treatment required}$$ $$= \left(\frac{\text{Initial BOD of city waste water - Max. permissible BOD of waste water}}{\text{Initial BOD of city waste water}} \right) \times 100$$ $$= \frac{728.57 \times 128.57 - 342.19 \times (128.57 \times 1.1)}{728.57 \times 128.57}$$ $$= 48.4\%$$ #### T2 : Solution BOD of mixture = $$\frac{Q_w Y_w + Q_R \times Y_R}{Q_w + Q_R} = \frac{8 \times 100 + 20 \times 6}{8 + 20}$$ = 32.857mg/I = 32.857 gm/m³ Deoxygenation rate constant with base 10, $$K_D = 0.434 \ K = 0.434 \times 0.252 = 0.1094$$ Area of river = 80 m² Flow of river = 20 + 8 = 28 m³/sec Stream velocity = $\frac{28}{80}$ = 0.35 m/sec $$Y_t = Y_0[1-10^{-K_D \cdot t}]$$ $5 = 32.857 [1-10^{-0.1094 \times t}]$ $t = 0.6553 \text{ days} = 56620.87 \text{ sec}$ Distance from downstream mixing point = Velocity × Time $$= 0.35 \times 56620 = 19817 \,\mathrm{m} \simeq 19.82 \,\mathrm{km}$$ \Longrightarrow \Rightarrow DO at 48.3 km downstream = 6.94 mg/l #### T3: Solution $$v = 0.85 \text{ m/s}$$ Distance = 48.3 km $$Time = \frac{d}{v} = \frac{48.3 \times 10^3}{0.85 \times 86400} = 0.657 \text{ days}$$ $$L_0 = 20 \text{ mg/l}$$ Initially D.O. = 10 mg/l $$D = 10 - 10 = 0$$ $$D_t = \frac{k_D L_0}{k_R - k_D} \Big[10^{-k_D t} - 10^{-k_R t} \Big] + 10^{-k_R t} D$$ $$= \frac{0.2 \times 20}{0.4 - 0.2} \Big[10^{-0.2 \times 0.657} - 10^{-0.4 \times 0.657} \Big] + 10^{-0.4 \times 0.657} \times 0$$ $$= 3.059 \text{ mg/l}$$ ∴ Dissolved oxygen = DO_{sat} − D_t $$= 10 - 3.059$$ $$= 6.94 \text{ mg/l}$$ 0000 ### **Treatment of Waste Water** #### T1: Solution Efficiency of treatment, $$\eta = \frac{Q_0 S_0 - Q_0 S_e}{Q_0 S_0} \times 100 = \frac{120 - 20}{120} \times 100 = 83.3\%$$ $$\eta = \frac{100}{1 + 0.0044 \sqrt{\frac{W_1}{V_1 F_1}}}$$ Amount of BOD entering, $$W_1 = Q_0S_0 \text{ kg/day}$$ = 2200 × 10³ × 120 × 10⁻⁶ = 264 kg/day $$F_1 = \frac{1+R}{(1+0.1R)^2}$$ $$R = \frac{Q_R}{Q_0} = \frac{4000}{2200} = 1.81$$ $$F_1 = \frac{1+1.81}{(1+0.1\times1.81)^2} = 2.01$$ $$83.3 = \frac{100}{1 + 0.44 \sqrt{\frac{264}{V_1 \times 2.01}}}$$ $V_1 = 637 \, \text{m}^3$ Depth = $1.5 \, \text{m}$ Plan area = $$\frac{637}{1.5}$$ $$\frac{\pi D^2}{4} = 425$$ $$D = 23.3 \, \text{m}$$ **Note:** The diameter of trickling filter is limited upto 60 m. as it is the maximum available size of rotatory distribution (if more than 60 m steel truss will bend at its ends due to self weight). •.• #### T2: Solution #### (i) 1st iteration Let the flow in the grit chamber be laminar. Thus, the settling velocity may be calculated by Stoke's equation i.e. $$v_t = \frac{g(S_s - 1)d^2}{18v} = \frac{9.81 \times (2.65 - 1) \times (0.2 \times 10^{-3})^2}{18 \times 10^{-2} \times (10^{-2})^2} = 0.036 \text{ m/s}$$ $$Re = \frac{v_t d}{v} = \frac{0.036 \times 0.2 \times 10^{-3}}{10^{-2} \times (10^{-2})^2} = 7.2$$ The value of Reynolds number is greater than 1 but less than 104. Hence, the flow is transitional. $$C_D = \frac{24}{Re} + \frac{3}{(Re)^{1/2}} + 0.34 = \frac{24}{7.2} + \frac{3}{(7.2)^{1/2}} + 0.34 = 4.8$$ The general formula for the calculation of settling velocity is given by $$v_t^2 = \frac{4}{3} \times g \times \frac{(S_s - 1)d}{C_D}$$ $$\Rightarrow \qquad v_t^2 = \frac{4}{3} \times 9.81 \times \frac{(2.65 - 1) \times 0.2 \times 10^{-3}}{4.8}$$ $$\Rightarrow \qquad v_t = 0.03 \text{ m/s}$$ 2nd iteration Again, $$Re = \frac{v_t d}{v} = \frac{0.03 \times 0.2 \times 10^{-3}}{10^{-2} \times (10^{-2})^2} = 6$$ $$\therefore \qquad C_D = \frac{24}{Re} + \frac{3}{(Re)^{1/2}} + 0.34 = \frac{24}{6} + \frac{3}{(6)^{1/2}} + 0.34 = 5.565$$ $$\therefore \qquad v_t^2 = \frac{4}{3} \times 9.81 \times \frac{(2.65 - 1) \times 0.2 \times 10^{-3}}{5.565}$$ $$\Rightarrow \qquad v_t = 0.028 \text{ m/s}$$ 3^rd iteration $$Re = \frac{v_t d}{v} = \frac{0.028 \times 0.2 \times 10^{-3}}{10^{-2} \times (10^{-2})^2}$$ $$\therefore \qquad C_D = \frac{24}{Re} + \frac{3}{(Re)^{1/2}} + 0.34 = \frac{2.4}{5.6} + \frac{3}{(5.6)^{1/2}} + 0.34 = 5.893$$ $$\therefore \qquad v_t^2 = \frac{4}{3} \times 9.81 \times \frac{(2.65 - 1) \times 0.2 \times 10^{-3}}{5.893}$$ $$\Rightarrow \qquad v_t = 0.027 \text{ m/s} \approx 0.028 \text{ m/s (Hence OK)}$$ Thus, the settling velocity of the 0.2 mm particles is 0.027 m/s. (ii) Critical horizontal flow velocity can be calculated by modified Shield's formula as $$V_h = 4.5\sqrt{gd(S_s - 1)} = 4.5\sqrt{9.81 \times 0.2 \times 10^{-3} \times (2.65 - 1)}$$ $$= 0.26 \, \text{m/s}$$ (iii) Let the length, width and depth of grit chamber be L, B and D respectively. Quantity of flow, $$Q = 40 \text{ MLD} = \frac{40 \times 10^6 \times 10^{-3}}{24 \times 60 \times 60} \text{ m}^3/\text{s} = 0.463 \text{ m}^3/\text{s}$$ Now, we know that, $$Q = V_b \times A$$ $$A = \frac{0.463}{0.26} \Rightarrow A = 1.78 \text{ m}^2$$ Assuming depth of tank (D) as 1 m, then $$D \times B = A$$ $$\Rightarrow$$ 1 × B = 1.78 $$\Rightarrow$$ $B = 1.78 \text{ m say } 1.8 \text{ m}$ Detention time = $$\frac{\text{Depth of basin}}{\text{Settling velocity}} = \frac{D}{v_t} = \frac{1}{0.027} = 37 \text{ seconds}$$ ∴ Lenth of tank, $$L = \text{Critical horizontal flow velocity} \times \text{Detention time}$$ = 0.26 × 37 = 9.6 m Thus, the dimensions of the tank will be 9.6 m \times 1.8 m \times 1 m #### T3: Solution The quantity of
water supplied = $Per capita rate \times Population$ $$= 120 \times 150 \text{ litres/day} = 18000 \text{ l/day}$$ Assuming that 80% of water supplied becomes sewage, we have The quantity of sewage produced = $18000 \times 0.8 = 14,400 l/day$. The quantity of sewage produced during the detention period (i.e. the capacity of the tank) (Assume detention period as 24 hr) $$= 14400 \times \frac{24}{24} = 14400$$ litres Now, assuming the rate of deposited sludge as 30 litres/capita/year; and also assuming the period of cleaning as 1 year, we have The volume of sludge deposited = $30 \times 150 \times 1 = 4500$ litres .. Total required capacity of the tank= Capacity for sewage + Capacity for sludge Assuming 1.5 m as the depth of the tank, we have The surface area of the tank = $$\frac{18.9}{1.5}$$ m² = 12.6 m² If the ratio of the length to width is kept as 3:1, we have $$3B^2 = 12.6$$ $$\Rightarrow$$ $B = \sqrt{\frac{12.6}{3}} = \sqrt{4.2} = 2.05 \,\text{m}; \text{ say 2.1 m}$ \therefore Provide width = 2.1 m; and Provide length of the tank = 6 m \therefore Area of cross-section provided = $6 \times 2.1 = 12.6 \text{ m}^2$ (same as required) Thus, the dimensions of the septic tank will be $6 \text{ m} \times 2.1 \text{ m} \times (1.5 + 0.3) \text{ m}$ overall depth [0.3 m used as free-board] Hence, use a tank of size $6 \text{ m} \times 2.1 \text{ m} \times 1.8 \text{ m}$. #### **T4**: Solution #### (i) Design of Septic Tank: Quantity of sewage produced per day $$= 110 \times 180 = 19800 l/day$$ Assuming the detention period to be 24 hours, we have The quantity of sewage produced during the detention period, i.e., the capacity of tank = $$19800 \times \frac{24}{24}$$ = 19800 litres Now assuming the rate of sludge deposit as 30 litres/capita/year and with the given 1 year period of cleaning, we have The quantity of sludge deposited = $30 \times 180 \times 1 = 5400$ litres Total required capacity of the tank $$= 19800 + 5400 = 25200$$ litres $= 25.2$ m³ Assuming the depth of the tank as 1.5 m, the cross-sectional area of the tank $$=\frac{25.2}{1.5}=16.8 \text{ m}^2$$ Using L: B as 4: 1 (given) we have $$4B^2 = 16.8$$ $$B = \sqrt{\frac{16.8}{4}} = 2.04 \approx 2m$$ $$L = 4 \times 2 = 8 \text{ m}$$ The dimensions of the tank will be $8 \text{ m} \times 2 \text{ m} \times (1.5 + 0.3 \text{ m})$ as overall depth with 0.3 m freeboard. Hence, use a tank of size $8 \text{ m} \times 2 \text{ m} \times 1.8 \text{ m}$. (ii) Design of Soak Pit: The soak pit or soak well can be designed by assuming the percolating capacity of the filtering media say as 1250 litres per cu-m per day. Sewage flow = 19800 l/d Percolation rate = 1250 l/m³/d :. Volume (of filtering media) required for the soak pit $$= \frac{19800 \ l/d}{1250 \ l/m^3 \ /d} = 15.84 \ m^3$$ If the depth of the soak pit is taken as 2 m, then Area of soak pit required = $\frac{15.84}{2}$ = 7.92 m² ∴Diameter of soak pit required = $\sqrt{\frac{7.92 \times 4}{\pi}}$ = 3.17; say 3.20 m #### **T5**: Solution - 1. Total 5-day BOD present in sewage = $4.5 \times 10^6 \times 160 \times 10^{-6} = 720 \text{ kg/day}$ - 2. Volume of the filter media required = $720 \times 10^3/160 = 4500 \text{ m}^3$ 3. Surface area $$= \frac{4.5 \times 10^6}{2000} = 2250 \,\text{m}^2$$ 4. Depth of the bed required $$=\frac{4500}{2250} = 2m$$ 5. Efficiency of the filter is given as, $$\eta = \frac{100}{1 + 0.0044\sqrt{u}}$$ where, u = organic loading in kg/ha-m/dayOrganic loading, $u = 160 \text{ gm/m}^3/\text{day}$ (given) Now, $1 \text{ hectare-} m = 10^4 \text{ m}^2 \cdot \text{m} = 10^4 \text{ m}^3$ $$u = \frac{160}{1000} 10^4 \text{ kg/ha-m/day} = 1600 \text{ kg/ha-m/day}$$ Hence, $\eta = \frac{100}{1 + 0.0044\sqrt{1600}} = \frac{100}{1 + 0.176} = \frac{100}{1.176} = 85.03\%$ #### T6: Solution 1. Total BOD present in raw sewage = $3.79 \text{ ML} \times 240 \text{ mg//} = 909.6 \text{ kg}$ 2. Now, filter volume required = $\frac{\text{Total BOD in raw sewage in kg}}{\text{Given BOD loading rate of } 11086 \text{ kg/ha-m}}$ $$=\frac{909.6}{11086}$$ ha-m = 0.082 ha-m - 3. Now, assuming that 35% of BOD is removed in primary clarifier, we have The amount of BOD applied to the filter = $0.65 \times 909.6 \text{ kg} = 591.24 \text{ kg}$ - 4. Now, using equation for efficiency of trickling filter, we have $$\eta = \frac{100}{1 + 0.0044 \sqrt{\frac{Y}{V \cdot F}}}$$ where, Y = Total BOD applied to the filter in kg = 591.24 kg \therefore V = Volume of the filter in ha-m = 0.082 ha-m $F = \frac{1 + \frac{R}{I}}{\left(1 + 0.1 \frac{R}{I}\right)^2}; \text{ where } \frac{R}{I} = 1$ $$F = \frac{1+1}{(1+0.1)^2} = \frac{2}{1.21} = 1.65$$ $$\eta = \frac{100}{1 + 0.0044 \sqrt{\frac{591.24}{0.082 \times 1.65}}} = 77.47\%$$ 5. The amount of BOD left in the effluent = 591.24 (1 - 0.7747) kg = 133.21 kg :. BOD concentration in the effluent = $$\frac{\text{Total BOD}}{\text{Sewage volume}} = \frac{133.21 \times 10^6}{3.79 \times \times 10^6} \text{mg/l} = 35.15 \text{ mg/l}$$ #### **T7: Solution** Volume of tank = $$20 \times 15 \times 5$$ = $1500 \text{ m}^3 = 1500 \times 10^3 \text{ litre}$ $Q = 0.08 \text{ m}^3/\text{sec} = 0.08 \times 24 \times 60 \times 60 \times 10^3 \text{ litre/day}$ = $6.912 \times 10^6 \text{ litre/day}$ Hydraulic retention time, $HRT = \frac{V}{Q}$ = $\frac{1500 \times 10^3}{6.912 \times 10^6} = 0.217 \text{ day} = 5.21 \text{ hrs}$ Sludge volume index (SVI) = $\frac{V_s}{\left(\frac{x_f}{1000}\right)} = \frac{250}{\left(\frac{2000}{1000}\right)} = 125 \text{ mI/gm}$ #### **T8: Solution** Daily sewage flow = $Q = 180 \times 35000 \, l/day = 6300 \, m^3/day$ BOD of sewage coming to aeration = $Y_0 = 70\% \times 220 \text{ mg/}l = 154 \text{ mg/}l$ (: 30% BOD is removed in primary settling) BOD left in effluent = $Y_F = 15\% \times 220 \text{ mg/}l = 33 \text{ mg/}l$ (: Overall 85% BOD removal is desired) ∴ BOD removed in activated plant = 154 - 33 = 121 mg/l $$\therefore \text{ Efficiency required in activated plant} = \frac{121}{154} = 0.79$$ For efficiency of 85-92%, we use F/M ratio as 0.4 to 0.3 and MLSS between 1500 to 3000 for convenctional activated plant. Since efficiency required is on lower side, we can use moderate figures for F/M ratio and MLSS. So let us adopt F/M = 0.33Similarly adopt MLSS $(X_T) = 2000 \text{ mg/l}$ Using equation, $\frac{F}{M} = \frac{QY_0}{VX_T}$ where, $$\frac{F}{M} = 0.33 \text{ (assumed)}$$ $$Q = 6300 \text{ m}^3/\text{day}$$ $$Y_0 = 154 \text{ mg/}l = 154 \text{ gm/m}^3$$ $$X_T = 2000 \text{ mg/}l \text{ (assumed)}$$ $$0.33 = \frac{6300 \times 154}{V \times 2000}$$ $$V = \text{Volume of aeration tank}$$ $$= \frac{6300 \times 154}{2000 \times 0.33} = 1470 \text{ m}^3$$ (i) Check for aeration period or H.R.T. (t) $$t = \frac{V}{Q} \times 24h = \frac{1470}{6300} \times 24h$$ = 5.6 h (within the limits of 4 to 6h) ... OK (ii) Check for S.R.T. (θ_c) $$VX_T = \frac{Q(Y_0 - Y_E)\theta_C}{1 + K_e \cdot \theta_C}$$ where, $$V = 1470 \, \mathrm{m}^3$$ $$X_T = 2000 \, \mathrm{mg/l}$$ $$Q = 6300 \, \mathrm{m}^3/\mathrm{d}$$ $$K_e = \mathrm{Endogeneous} \, \mathrm{respiration} \, \mathrm{rate} \, \mathrm{constant}$$ $$= 0.06 \, d^{-1}$$ $$Y_0 = \mathrm{BOD} \, \mathrm{of} \, \mathrm{influent} \, \mathrm{in} \, \mathrm{aeration} \, \mathrm{tank} = 154 \, \mathrm{mg/l}$$ $$Y_F = \mathrm{BOD} \, \mathrm{of} \, \mathrm{effluent} = 33 \, \mathrm{mg/l}$$ Substituting the values, we get $$1470 \times 2000 = \frac{6300(154 - 33)\theta_c}{1 + 0.06 \times \theta_c}$$ $$\Rightarrow 1 + 0.06\theta_c = \left(\frac{6300 \times 121}{1470 \times 2000}\right)\theta_c = 0.275\theta_c$$ $$1 + 0.06\theta_c = 0.259\theta_c$$ $$1 = (0.259 - 0.06)\theta_c$$ $$\Rightarrow 1 = 0.199\theta_c$$ $$\theta_c = \frac{1}{0.199} = 5.02 \text{ days} = 5 \text{ days} \qquad \dots \text{ OK}$$ As it lie between 5 to 8 days. (iii) Check for volumetric loading Volumetric loading = $$\frac{Q \cdot Y_0}{V}$$ gm of BOD/m³ of tank volume = $\frac{6300 \times 154}{1386}$ gm/m³ = 700 gm/m³ = 0.7 kg/m³ ... OK The value is within the permissible range of 0.3 - 0.7 kg/m³. (iv) Check for return sludge ratio = $$\frac{Q_R}{Q} = \frac{X_T \text{ (i.e.MLSS)}}{\frac{10^6}{\text{SVI}} - X_T}$$ where, SVI = 100 ml/gm (assumed since this value should be in the range of 50-150) $$X_T = 2000 \,\text{mg/l}$$ \Rightarrow $$\frac{Q_R}{Q} = \frac{2000}{\left(\frac{10^6}{100} - 2000\right)}$$ = 0.25 (i.e. within the prescribed range of 25 to 50%) We will, for conservative purposes, however provide 33% return sludge. The adapted SVI with this return sludge ratio is then computed as: $$0.33 = \frac{2000}{\left(\frac{10^6}{\text{SVI}} - 2000\right)}$$ $$\Rightarrow \frac{10^6}{\text{SVI}} - 2000 = \frac{2000}{0.33} = 6060$$ $$\Rightarrow \text{SVI} = \frac{10^6}{8060} = 125 \quad \dots \text{OK}$$ The sludge pumps for bringing recirculated sludge from the secondary sedimentation tank will thus have a capacity = $33\% \times Q = 33\% \times 6300 \text{ m}^3/\text{d} = 2100 \text{ m}^3/\text{d}$. **Tank dimensions.** Adopt aeration tank of depth 3 m and width 4.5 m. The total length of the aeration channel required. $$= \frac{\text{Total volume required}}{B \times D} = \frac{1470}{4.5 \times 3} \text{m}$$ $= 108.9 \, \text{m}; \, \text{say } 111 \, \text{m}$ Provide a continuous channel, with 3 aeration chambers, each of 37 m length. Total width of the unit, including 2 baffles each of 0.25 m thickness = 3×4.5 m + 2×0.25 = 14 m. Total depth provided including free-board of 0.6 m will be 3 + 0.6 = 3.6 m. OverallI dimensions of the Aeration tank will be 37 m \times 14 m \times 3.6 m. #### **T9: Solution** The quantity of sewage to be treated per day $$= 1000 \times 200 = 200000$$ litres = 0.2 ml = 200 cu-m The BOD content per day $$= 0.2 \text{ m}l \times 300 \text{ mg/}l = 60 \text{ kg}$$ Now, the organic loading in the pond is 600 kg/ha/day The surface area required $$= \frac{60 kg / day}{600 kg / ha / day} = \frac{60}{600} \times 10^4 \text{ m}^2 = 1000 \text{ m}^2$$ Using L: B as
2: 1 (given), we have $$2 B^2 = 1000$$ $$B = \sqrt{\frac{1000}{2}} = 22.36 \approx 22.4 \text{m}$$ Use $$L = 44.8$$ Using a tank with operational depth as 1.2 m, we have The provided capacity = $22.4 \times 44.8 \times 1.2$ $$= 1204.22 \,\mathrm{m}^3$$ Now, Capacity = Sewage flow per day × Detention time in days .. Detention time in days = $$\frac{\text{Capacity in cu-m}}{\text{Sewage flow per day in cu-m/d}}$$ = $\frac{1204.22}{200}$ = 6.02 = 6 days Hence, use an oxidation pond with length = 50 m; width = 25 m and overall depth = (1.2 + 1) = 2.2 m and a detention period of 6 days. Design of Inlet Pipe: Assume an average velocity of sewage as 0.9 m/sec and daily flow for 8 hours only. Discharge = $$\frac{200}{8 \times 60 \times 60}$$ cu-m .. Area of inlet pipe required $$= \frac{\text{Discharge}}{\text{Velocity}} = \left(\frac{200}{8 \times 60 \times 60}\right) \times \frac{1}{0.9} \text{ m}^2 = 77.16 \text{ cm}^2$$.. Diameter of inlet pipe $$=\sqrt{\frac{4\times77.16}{\pi}}$$ = 9.91 cm; Say 10 cm Diameter of outlet pipe may be taken as 1.5 times that of the inlet; Say 15 cm. #### T10: Solution Volume of grit chamber, $V = 12 \text{ m} \times 1.5 \text{ m} \times 0.8 \text{ m}$ $= 14.4 \,\mathrm{m}^3$ Discharge in chamber, $Q = 720 \text{ m}^3/\text{hr}$ So, detention time, $t_d = \frac{V}{Q} = \frac{14.4 \text{m}^3 \times 60}{720 \text{m}^3} = 1.2 \text{ minutes}$ Surface loading rate, $$V_s = \frac{\text{Discharge}}{\text{Surface area}} = \frac{720 \text{ m}^3/\text{hr}}{12\text{m} \times 1.5 \text{ m}}$$ = $40 \text{ m}^3/\text{hr/m}^2$ = 4000 Lph/m^2 #### T11: Solution $$Q = 2670 \text{ m}^3/\text{d};$$ $N_t = \text{No. e}^{-0.145\text{t}}$ Let x be the no. of microorganisms (M.O.) present initially. 98% kill of M.O. imlies that at time 't' 2% of M.O. are still surviving $$\therefore$$ M.O. surviving at time 't' = $\frac{2}{100}x$ $$\frac{2}{100}x = x \cdot e^{-0.145t}$$ $$t = 26.979 \text{ min} = 0.018736 \text{ days}$$ $$\therefore$$ Volume = $Q.t$ = $2670 \times 0.018736 = 50.0244 \text{ m}^3$ CCCC ## Design of Sewers & Sewerage System #### T1: Solution Form Manning's formula, we have $$v = \frac{1}{n} r^{2/3} \sqrt{s}$$ At full depth, using capital letters, we have $$V = \frac{1}{N}.R^{2/3}\sqrt{S}$$ Using $V = 0.90 \,\mathrm{m/sec}$ N = 0.013 $$R = \frac{D}{4} = \frac{300}{4} = 75 \text{ mm} = 0.075 \text{ m}$$ We have $0.90 = \frac{1}{0.013} (0.075)^{2/3} \sqrt{S}$ or $\sqrt{S} = \frac{0.90 \times 0.013}{0.178} = 0.0657$ or $S = 0.0043 \text{ (i.e., } 4.3\%)^*$ and Q = A. V $$=\frac{\pi}{4}(0.3)^2$$ 0.90 cumecs = 0.064 cumecs Now, at a depth (*d*) equal to 0.3 times the full depth (*D*), we have $\frac{d}{D}$ = 0.3 (variations of n to be neglected, as given) $$\frac{a}{A} = 0.252; \qquad \frac{r}{R} = 0.684$$ Now for the sewer to be the same self-cleansing at 0.3 depth (d), as it will be at full depth, we have the gradient (s_s) required as $$s_s = \left(\frac{R}{r}\right)S = \frac{1}{0.684}S = \frac{1}{0.684} \times 0.0043 = 0.0063 \text{ (i.e., 0.63\%)}$$ $$= \frac{1}{15873} \approx \frac{1}{159}$$ #### **T2**: Solution Sewage discharge computations Average quantity of water consumed per day $$= 170 \times 8000 \text{ litres/day}$$ Average quantity of water consumed in cumecs $$= \frac{170 \times 8000}{1000 \times 24 \times 60 \times 60} \text{ cumecs} = 0.0157 \text{ cumecs}$$ Assuming that 80% of water consumed appears as sewage, we have Average quantity of sewage discharge $$= 0.8 \times 0.0157$$ cumecs $= 0.0126$ cumecs. Assuming the peak sewage discharge to be three times the average discharge, we have Maximum rate of sewage produced $$= 0.3 \times 0.0126$$ cumecs $= 0.038$ cumecs Storm run-off computations Assuming the coefficient of run-off (K) for the area as 0.55, we have, by using Rational formula Peak storm run-off $$Q_p = \frac{1}{36} K p_c. A = \frac{1}{36} \times 0.55 \times 4 \times 36 \text{ cumecs} = 2.2 \text{ cumecs}$$ Combined maximum discharge $$= 2.2 + 0.038 = 2.238$$ cumecs Now, assuming that the sewer while carrying this combined peak discharge possesses 10% extra capacity, we have The design discharge which the sewer should carry while flowing full $$=\frac{2.238}{0.9}$$ cumecs = 2.49 cumecs Now, using Manning's formula, we have $$Q = \frac{1}{N} AR^{2/3} \sqrt{S}$$ Using the same gradient as in available i.e., $\frac{1}{900}$ as the first proposition, and Manning's N = 0.013 for smooth concrete or vitrified clay sewer, we have $$2.49 = \frac{1}{0.013} \left(\frac{\pi D^2}{4} \right) \left(\frac{D}{4} \right)^{2/3} \frac{1}{\sqrt{900}}$$ Where D is the dia. of the equivalent circular section. $$D^{8/3} = \frac{2.49 \times 0.013 \times 4 \times 2.52 \times 30}{\pi}$$ or $$D^{8/3} = 3.12$$ $$D = (3.12)^{\frac{3}{8} = 0.375} = 1.533 \text{ m; say } 1.54 \text{ m}$$ Now, velocity generated $$= \frac{Q}{A} = \frac{2.49}{\frac{\pi}{4}(1.54)^2} = 1.33 \text{ m/sec}$$ This is satisfactory. **Note:** The velocity can be increased further by steepening the slope and changing the size of the sewer accordingly. This will no doubt increase the ground excavations but will make the sewer more efficient at low flows, as the presently designed sewer may give very low velocities at low flows during non-monsoon seasons. Check for lone sewage discharge When maximum sewage is passing (once a day) in non-monsoon periods, the $\frac{q}{Q}$ will be equal to $$\frac{0.038}{2.49} = 0.0152$$. For this ratio of $\frac{q}{Q} = 0.0152$, from fig. we have $$\frac{v}{V} = 0.3$$ or $$n = 0.3 \times 1.35 = 0.4 \text{ m/sec}$$ (which is just sufficient for non-silting) Hence, in this sewer, deposition will take place during average and minimum lone sewage flow. The efficiency can be further increased by providing a steeper gradient, or by providing egg shaped section, which provide comparatively larger proportionate velocities at low depths. #### (b) Equivalent egg shaped sewer $$D = 1.54 \,\mathrm{m}$$ If D' is the width of the standard equivalent egg shaped sewer, we have $$D' = 0.84 D$$ or $$D' = 0.84 \times 1.5 = 1.295 \text{ m say } 1.3 \text{ m}$$ Thus, the top width of the egg shape section = 1.3 m and the height or vertical diameter of the egg shape section $$= 1.5 D' = 1.5 \times 1.3 = 1.95 m$$ Hence use a standard egg shaped section $1.3 \, \text{m} \times 1.95 \, \text{m}$, as shown in figure. #### T3: Solution Water supplied = $$100000 \times 200 = 20 \times 10^6$$ litres/day $$= \frac{20 \times 10^6}{10^3 \times 24 \times 3600} = 0.2315 \, \text{cumecs}$$ Assuming that 80% of the water supplied to the town appears as sewage, we have average discharge in the sewer $$= 0.8 \times 0.2315 = 0.185$$ cumecs At a peak factor of 3. Maximum discharge = $3 \times 0.185 = 0.556$ cumecs Since the sewer is to be designed as running 0.7 times the full depth, $$\frac{d}{D}$$ = 0.7 and q = 0.556 cumecs For a sewer running partially full $$\cos\frac{\theta}{2} = \frac{\frac{D}{2} - d}{D/2} = 1 - 2\frac{d}{D} = 1 - 2 \times 0.7 = -0.4$$ $$\frac{\theta}{2} = 113.58^{\circ}; \quad \theta = 227.16^{\circ}; \quad \sin \theta = -0.7332$$ $$a = \frac{\pi}{4}D^2 \left[\frac{\theta}{360} - \frac{\sin \theta}{2\pi} \right]$$ $$= \frac{\pi}{4}D^2 \left[\frac{227.16}{360} - \frac{(-0.7332)}{2\pi} \right] = 0.587 D^2$$ $$p = \pi D \frac{\theta}{360} = \pi D \frac{227.16}{360} = 1.982D$$ $$r = \frac{a}{p} = \frac{0.587 D^2}{1.982 D} = 0.296 D$$ Now. *:*. $$q = \frac{1}{n} a r^{2/3} S^{1/2}$$ $$0.556 = \frac{1}{0.013} \times 0.587 D^2 (0.296 D)^{2/3} \left(\frac{1}{500}\right)^{1/2}$$ $D^{8/3} = 0.6190$ $D = 0.835 \,\mathrm{m}$ Check for self cleansing velocity at maximum discharge $$r = 0.296 D = 0.296 \times 0.835 = 0.247 m$$ $$v = \frac{1}{n}r^{2/3}S^{1/2} = \frac{1}{0.013}(0.247)^{2/3} \left(\frac{1}{500}\right)^{1/2} = 1.356 \text{ m/s}$$ This is much more than the self cleansing velocity of 60 cm/sec. #### Check for self cleansing velocity at minimum discharge Let us assume minimum flow equal to $\frac{1}{3}$ times the average flow. $$\begin{array}{l} \therefore \qquad \qquad q_{\min} = \frac{1}{3} \times 0.185 = 0.0617 \, \mathrm{m}^3/\mathrm{s} \\ \\ \mathrm{Full flow \, discharge} = \frac{1}{n} \bigg(\frac{D}{4} \bigg)^{2/3} \, S^{1/2} \cdot \frac{\pi D^2}{4} \\ \\ = \frac{1}{0.013} \bigg(\frac{0.835}{4} \bigg)^{2/3} \bigg(\frac{1}{500} \bigg)^{1/2} \times \frac{\pi}{4} (0.835)^2 = 0.6625 \, \mathrm{m}^3/\mathrm{s} \\ \\ \frac{q_{\min}}{Q} = \frac{0.185}{3 \times 0.6625} = 0.093 \\ \\ V_{\mathrm{full}} = \frac{0.6625}{\frac{\pi}{4} (0.835)^2} = 1.21 \, \mathrm{m/s} \\ \\ \mathrm{For} \qquad \qquad \frac{q}{Q} = 0.093 \\ \\ \frac{v}{V} = 0.622 \\ \\ v = 0.753 \, \mathrm{m/s} > 0.6 \, \mathrm{m/s} \, (\mathrm{Self \, cleansing \, Velocity}) \\ \end{array}$$ #### **T4**: Solution #### (i) Rectangular section: Let D = Depth of rectangular section. .. Width, $$B = 1.5 D$$ $$A = D \times 1.5 D = 1.5 D^{2}$$ $$P = D + 1.5D + D = 3.5D$$ $$R = \frac{A}{P} = \frac{1.5D^{2}}{3.5D} = 0.428D$$ $$Q = A \times V = A \times \frac{1}{N} R^{2/3} S^{1/2}$$ or $$Q = (1.5D^{2}) \times \frac{1}{N} (0.428D)^{2/3} S^{1/2}$$ or, $$Q = 0.852 D^{8/3} \times \frac{S^{1/2}}{N}$$ #### (ii) Circular Section: Let, d = Diameter $$A = \frac{\pi}{4}d^{2}$$ $$P = \pi d$$ $$R = \frac{A}{P} = \frac{\pi}{4}d^{2} \times \frac{1}{\pi d}$$... (i) Now, $$R = \frac{d}{4}$$ $$Q = A \times V$$ $$= A \times \frac{1}{N} R^{2/3} S^{1/2}$$ $$= \frac{\pi}{4} d^2 \times \frac{1}{N} \left(\frac{d}{4}\right)^{2/3} S^{1/2}$$ $$Q = 0.312 \ d^{8/3} \times \frac{S^{1/2}}{N} \qquad ... (ii)$$ For the two sewers to be hydraulically equivalent Q, N and S are the same. Hence from equations (i) and (ii), we get or, $$0.852 D^{8/3} = 0.312 d^{8/3}$$ $$\left(\frac{D}{d}\right)^{8/3} = 0.366 \text{ or } \frac{D}{d} = (0.366)^{3/8}$$ $$\frac{D}{d} = 0.686$$ D = 0.686 d OOOO Hence, ### **Noise Pollution** #### T1: Solution $L_{\rm eq}$ is defined as the constant noise level, which, over a given time, expands the same amount of energy, as is expanded by
the fluctuating levels over the same time. The L_{eq} is calculated as $$L_{\text{eq}} = 10 \log_{10} \sum_{i=1}^{i=n} (10)^{\frac{Li}{10}} \times t_i$$ where, L_i = The noise level of any i^{th} sample t_i = Time duration of i^{th} sample expressed as fraction of total sample time Here, Total sample time = 100 sec | Time (in s) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |--|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Noise (dBA) L(t) | 71 | 75 | 70 | 78 | 80 | 84 | 76 | 74 | 75 | 74 | | $t_i = \frac{t}{100}$ | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | L _i 10 | 7.1 | 7.5 | 7.0 | 7.8 | 8.0 | 8.4 | 7.6 | 7.4 | 7.5 | 7.4 | | $\Sigma(10)^{\frac{L_i}{10}} \times t_i$ | 590167630.6 | | | | | | | | | | $$L_{eq} = 10 \log_{10} \sum_{1}^{10} (10)^{\frac{L_{i}}{10}} \times t_{i}$$ $$= 10 \times \log_{10} (59016760.6)$$ $$= 87.70 dB$$ CCCC