• CLASS TEST • S.No.: 015K_ABCDEFG_06052								052024	
Delhi Bhopal Hyderabad Jaipur Pune Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
Date of Test : 06/05/2024									
ANSWER KEY >									
1.	(b)	7.	(a)	13.	(a)	19.	(c)	25.	(d)
2.	(c)	8.	(a)	14.	(a)	20.	(d)	26.	(b)
3.	(a)	9.	(a)	15.	(b)	21.	(c)	27.	(a)
4.	(c)	10.	(d)	16.	(a)	22.	(b)	28.	(d)
5.	(a)	11.	(a)	17.	(b)	23.	(b)	29.	(b)
6.	(d)	12.	(b)	18.	(a)	24.	(d)	30.	(d)

DETAILED EXPLANATIONS

1. (b)

Current through 20 k Ω resistor,

$$i_R = \frac{400}{20 \times 10^3} = 0.02 \text{ A}$$

Current through inductor,

$$\begin{split} i_L &= \frac{V}{R_1} \Big(1 - e^{-R_1/Lt} \Big) = \frac{200}{40} \Big(1 - e^{-40t} \Big) \\ &= 5(1 - e^{-40t}) \\ i_A &= i_R + i_L \\ &= 0.02 + 5(1 - e^{-40t}) \end{split}$$

To turn on $i_A \ge$ latching current,

 $0.02 + 5(1 - e^{-40t}) = 60 \text{ mA}$ $T = 200 \, \mu sec$

2. (c)

Using relation,

 $\cos\alpha - \cos(\alpha + \mu) = \text{constant}$...(1) $\alpha = 35^\circ$, $\mu = 4^\circ$ $K = \cos 35^{\circ} - \cos (35 + 4^{\circ}) = 0.042$ At $\alpha = 0^{\circ}$

L

et,

$$\mu = \mu_0$$

$$K = \cos 0^\circ - \cos(0 + \mu_0)$$

$$0.042 = 1 - \cos \mu_0$$

$$\cos \mu_0 = 0.958$$

$$\mu_0 = 16.66^\circ$$
Inductive voltage regulation =
$$\frac{1 - \cos \mu_0}{2} = 0.0209$$

3. (a)

4. (c)

Due to absence of minority carrier reverse recover time of schottky diode is in nanosecond. It is used in SMPS.

5. (a)

The source is a 'cosine' function. So capacitor charges to its maximum value instantaneously as switch is closed at t = 0. So diode conducts for 0°.

6. (d)

Average load current = $\frac{12+16}{2} = 14 \text{ A}$ Average load voltage = $V_0 = I_0 R = 14 \times 10 = 140 \text{ V}$ $V_0 = \alpha V_s$ Since the chopper is step down or type-A, $140 = \alpha 200$ $\alpha = \frac{140}{200} = 0.7$ $\frac{T_{\text{on}}}{T_{\text{on}} + T_{\text{off}}} = 0.7$ $0.3 T_{\text{on}} = 0.7 T_{\text{off}}$ $\frac{T_{\text{on}}}{T_{\text{off}}} = 2.33$

7. (a)

In 6 pulse thyristor, frequency components available on supply side current are f_s , $(6K \pm 1) f_s$ where K = 1, 2, 3, 4, ...**60**, 300, 420, 660 Lowest frequency component is 60.

8. (a)

9. (a)

During the positive half cycle the circuit is,

10. (d)

In the output phase voltage the even, third and multiples of 3^{rd} harmonics are absent. So, lowest order harmonics are 5^{th} harmonics,

Fourier series,
$$V_R = \sum_{n=6k\pm 1} \frac{2V_s}{n\pi} \sin n \omega t$$

So, frequency of 5th harmonis = $5 \times$ fundamental frequency = $5 \times 50 = 250$ Hz

11. (a)

The main thyristor is turned off when i_c is,

$$i_c = I_p \sin \omega t = I_0$$

$$i_c = -1 \left(I_0 \right)$$

$$\omega t = \sin^{-1} \left(\frac{I_0}{I_p} \right)$$

Peak value of current through capacitor,

$$I_p = V_s \sqrt{\frac{C}{L}} = 230 \times \sqrt{\frac{20 \times 10^{-6}}{5 \times 10^{-6}}} = 460 \text{ A}$$
$$\omega t = \sin^{-1} \left(\frac{300}{460}\right) = 40.70^{\circ}$$

Voltage across main thyristor = $V_s \cos \omega t$

12. (b)

The power loss,

$$P = \frac{1}{T} \int_{0}^{3} V_{s}(t) i_{s}(t) dt$$
$$= \frac{1}{T} \int_{0}^{3} \left(\frac{200}{3}t\right) \left(\frac{600}{3}t\right) dt = \frac{40000}{3T} \int_{0}^{3} t^{2} dt$$
$$P = \frac{40000}{3T} \left[\frac{t^{3}}{3}\right]_{0}^{3}$$

Where *T* is in μ sec

$$\Rightarrow$$

P = 6 Watt average power loss

13. (a)

Given,

$$\frac{V_{dc}}{2} = 96$$
$$V_{dc} = 192 \text{ V}$$

Rms value of the fundamental voltage in the output,

$$V_{01} = \frac{2V_s}{\sqrt{2}\pi} = \frac{2 \times 192}{\sqrt{2}\pi} = 86.43 \text{ V}$$

Fundamental power in the output,

$$= \frac{(V_{01})^2}{R} = \frac{(86.43)^2}{5} = 1494 \text{ W}$$

14. (a)

Fourier expression of output voltage is,

$$V_{0, n} = \sum_{n=1,3,5}^{\infty} \frac{2V_{dc}}{n\pi} \sin n \, \omega t \, V$$

Harmonic factor for 3rd harmonic

H.F. =
$$\frac{V_{3, \text{rms}}}{V_{1, \text{rms}}}$$

H.F. = $\frac{V_{3, \text{rms}}}{V_{1, \text{rms}}} = \frac{\frac{2 \times 48}{\sqrt{2} \times 3\pi}}{\frac{2 \times 48}{\sqrt{2}\pi}} \times 100$
= $\frac{1}{3} \times 100 = 33.33\%$

15. (b)

During the on period of T_1 and T_2 the circuit behaves as

Where,

Peak to peak of output voltage is 1500 V.

The reverse voltage that appears across thyristor is 750 V.

16. (a)

To eliminante the 5th harmonic content,

$$2d = \frac{2\pi}{5}$$
$$d = \frac{\pi}{5} = 36^{\circ}$$

India's Best Institute for IES, GATE & PSUs

The 7th harmonic rms value is,

$$V_{07 \,(\rm rms)} = \frac{4V_S}{7\pi\sqrt{2}}\sin\frac{7\pi}{2}\sin(7\times36^\circ)$$

= 0.122 V_S

17. (b)

Average ON state loss = $I_{\rm rms}^2 R_{ON}$

Where, $I_{\rm rms} \rightarrow {\rm rms}$ value current,

 $R_{\rm ON} \rightarrow {\rm On}$ state resistance of MOSFET

18. (a)

Gate-cathode characteristic slope = $\frac{V_g}{I_g}$ Where, V_g = Allowable voltage across SCR I_g = Allowable current across SCR $\frac{V_g}{I_g}$ = 120 V_g = 120 I_g ...(i) Allowable gate power dissipation = 0.4 watt $V_g I_g$ = 0.4 Watt Put value of ' V_g ' from equation (i) $(120I_g)I_g$ = 0.4

$$\begin{split} I_g &= \sqrt{\frac{0.4}{120}} A = 0.0577 \text{ A} \\ V_g &= 120 \times 0.0577 = 6.92 \text{ V} \\ V_s &= V_g + R_s I_g \\ 20 &= 6.928 + 0.0577 R_s \\ 0.0577 R_s &= 13.071 \\ R_s &= 226.54 \text{ }\Omega \end{split}$$

We know,

The diode will start conducting at an angle $\boldsymbol{\theta}_1$, where

$$\theta_1 = \sin^{-1} \frac{E}{(V_s)_{\text{max}}} = \sin^{-1} \frac{120}{230 \times \sqrt{2}} = 21.64^{\circ}$$

Average value of charging current,

$$I_{0 \text{ avg}} = \frac{1}{2\pi R} \Big[2V_m \cos\theta_1 - E(\pi - 2\theta_1) \Big]$$

= $\frac{1}{2\pi \times 10} \Big[2 \times 230 \times \sqrt{2} \times \cos 21.64^\circ - 120 \Big(\pi - \frac{2 \times 21.64^\circ \times \pi}{180} \Big) \Big]$
= 5.071 A

Power delivered to battery

$$= EI_{0 \text{ avg}} = 120 \times 5.071 = 608.82 \text{ W}$$

(Power delivered to battery) × (Charging time in hours) = Battery capacity

 $(608.52) \times \text{charging time} = 8850 \text{ Wh}$

Charging time =
$$\frac{8850}{608.52}$$
 hours = 14.54 hours

20. (d)

For 1- ϕ semiconverter,

Supply rms current,
$$I_{\rm rms} = I_{dc} \left[\frac{\pi - \alpha}{\pi} \right]^{1/2} = I_{dc} \left[\frac{\pi - \pi / 4}{\pi} \right]^{1/2} = 0.866 I_{\rm dc}$$

The rms value of the supply fundamental component of input current

$$I_{\rm rms, 1} = \frac{2\sqrt{2}}{\pi} I_{dc} \cos\left(\frac{\alpha}{2}\right)$$
$$= \frac{2\sqrt{2}}{\pi} I_{dc} \cos\left(\frac{\pi}{4 \times 2}\right) = 0.83178 I_{dc}$$
Harmonic factor (*Hf*) =
$$\left[\left(\frac{I_{\rm rms}}{I_{\rm rms,1}}\right)^2 - 1\right]^{1/2} = \left[\left(\frac{0.866I_{dc}}{0.83178I_{dc}}\right)^2 - 1\right]^{1/2} = 28.98\%$$

21. (c)

Case-I,

$$T_j = 110^{\circ} \text{ C},$$
 $T_s = 80^{\circ} \text{ C}$
 $P_{av 1} = \frac{110 - 80}{0.16 + 0.05} = 142.85 \text{ W}$

Case-II,

$$T_j = 110^{\circ} \text{ C},$$
 $T_s = 50^{\circ} \text{ C}$
 $P_{av 2} = \frac{110 - 50}{0.16 + 0.05} = 285.71 \text{ W}$

Thyristor rating is proportional to the square root of average power loss

% increase in rating =
$$\frac{\sqrt{285.71} - \sqrt{142.85}}{\sqrt{142.85}} \times 100 = 41.42\%$$

22. (b)

For Buck-converter

Average output voltage = DV_s Where, D = Duty ratio, V_s = input voltage V_s = 40 V, V_0 = 16 V f = 20 kHz 16 = $D \times 40$ D = $\frac{16}{40}$ = 0.4

Peak to peak ripple current,

$$\Delta I_L = \frac{V_s D(1-D)}{L f}$$
$$0.8 = \frac{40 \times 0.4 \times 0.6}{L \times 20 \times 10^3}$$
$$L = 600 \,\mu\text{H}$$

23. (b)

 $V_{s} = 250 \text{ V},$

$$V_0 = 625 \text{ V}$$

For boost converter,

$$V_{0} = \frac{V_{s}}{1 - D}$$

$$625 = \frac{250}{1 - D}$$

$$D = 0.6$$

$$I_{L \min} = I_{L} - \frac{\Delta I_{L}}{2} = \frac{3125}{250} - \frac{250 \times 0.6}{2 \times 10 \times 10^{-3} \times 25 \times 10^{3}}$$

$$= 12.2 \text{ A} > 0$$

 \Rightarrow

It is operating in continuous conduction,

India's Best Institute for IES, GATE & PSUe

Now

 \Rightarrow

$$I_{0} = \frac{3125}{625} = 5 \text{ A}$$

$$\frac{V_{0}}{V_{s}} = \frac{I_{s}}{I_{0}} = \frac{1}{1 - D}$$

$$I_{s} = \frac{I_{0}}{1 - D} = \frac{5}{1 - 0.6} = 12.5 \text{ A}$$

$$R_{\text{in}} = \frac{V_{s}}{I_{s}} = \frac{250}{12.5} = 20 \Omega$$

24. (d)

Output voltage $(V_0) = 36$ V Input voltage $(V_s) = 24$ V

For Buck-boost converter

$$V_0 = \frac{DV_s}{1-D}$$

$$36 = \frac{24D}{1-D}$$

$$36 - 36D = 24D$$

$$60D = 36$$

$$D = 0.6$$

$$\Delta I_L = \frac{DV_s}{Lf}$$

At the boundary,

$$I_{Lavg} - \frac{\Delta I_L}{2} = 0$$

$$\frac{I_0}{1 - D} = \frac{\Delta I_L}{2} \qquad \left[I_{Lavg} = \frac{I_0}{1 - D} \right]$$

$$\frac{144/36}{1 - 0.6} = \frac{0.6 \times 24}{2 \times 20 \times 10^3 \times L}$$

$$L = \frac{0.4}{4} \times \frac{0.6 \times 24}{2 \times 20 \times 10^3} = 36 \,\mu\text{H}$$

25. (d)

For ON period:

For OFF-period

26. (1

$$P_{\text{avg}} = I_{\text{rms}}^2 \cdot R_{ON}$$

$$R_{ON} = 0.15 \ \Omega \text{ and } I_{\text{rms}} = \sqrt{\frac{1}{2\pi} \int_0^{\pi} 10t \, dt} = \frac{10}{\sqrt{6}}$$

$$P_{\text{avg}} = \frac{100}{6} \times 0.15 = 2.50 \text{ W}$$

27. (a)

For 1- ϕ full bridge inverter

$$V_{dc} = 60 \text{ V}, \qquad R = 12 \Omega$$

$$V_{01 \text{ rms}} = \frac{2\sqrt{2}V_{dc}}{\pi} = \frac{2\sqrt{2}}{\pi} \times 60 = 54.046 \text{ V}$$
Power = $\frac{V_{01 \text{ rms}}^2}{R} = \frac{(54.046)^2}{12} = 243.41 \text{ W}$

28. (d)

Pole voltage, phase voltage,

$$V_{\text{pole}} = V_R \rightarrow \text{quasi square wave } 2d = \frac{2\pi}{3} \text{ rad}$$

 $n = 6K \pm 1 = 1, 5, 7, 11, 13 \dots$

Line voltage \rightarrow 6 step :

$$n = 6K \pm 1 = 1, 5, 7, 11, 13 \dots$$

29. (b)

Average output voltage of the converter,

$$V_0 = \frac{3V_{mL}}{\pi}\cos\alpha$$

www.madeeasy.in

India's Best Institute for IES, GATE & PSUs

Load current, $I_{0} = 20 \text{ A}$ Back emf, $E_{b} = 180 \text{ V}$ $R_{a} = 1 \Omega$ Applying KVL, $V_{0} - 1 \times I_{0} - 180 = 0$ $V_{0} = 180 + 1 \times 20 = 200 \text{ V}$ Now, $\frac{3V_{mL}}{\pi} \cos \alpha = 200$ $\frac{3 \times 400 \times \sqrt{2}}{3.14} \times \cos \alpha = 200$ $\cos \alpha = 0.37$ $\alpha = 68.28^{\circ}$

30. (d)

$$V_{i} = 200\sqrt{2}\sin(120\pi t)V$$
$$i_{i} = \left(20\sqrt{2}\sin\left(120\pi t - \frac{\pi}{3}\right) + 10\sqrt{2}\sin\left(360\pi t + \frac{\pi}{4}\right)\right) + 4\sqrt{2}\sin\left(840\pi t - \frac{\pi}{6}\right)A$$

Fundamental component of input voltage,

$$(V_i)_1 = 200\sqrt{2}\sin(120\pi t)V$$

 $(V_i)_{\rm rms} = 200 V$

Fundamental component of current,

$$(i_L)_{1, \text{ rms}} = \frac{20\sqrt{2}}{\sqrt{2}} = 20$$

Phase difference between the two components

$$\phi_1 = \frac{\pi}{3}$$

Active power due to fundamental component

$$P_1 = (V_i)_{1 \text{ rms}} \times (i_i)_{1 \text{ rms}} \cos \phi_1$$
$$P_1 = 200 \times 20 \times \cos\left(\frac{\pi}{3}\right) = 2000 \text{ W}$$

rms value of input voltage = 200 V

rms value of current =
$$\sqrt{\left(\frac{20\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{10\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{4\sqrt{2}}{\sqrt{2}}\right)^2} = \sqrt{400 + 100 + 16} = \sqrt{516}$$

= 22.71 A

Let input power factor $\cos \phi$

 $200 \times 22.71 \times \cos \phi = 2000$

$$\cos \phi = \frac{10}{22.71} = 0.44$$