CLASS TEST

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

POWER ELECTRONICS

ELECTRICAL ENGINEERING

Date of Test: 06/05/2024

ANSWER KEY

| 1. | (b) | 7. | (a) | 13. | (a) | 19. | (c) | 25. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (d)

DETAILED EXPLANATIONS

1. (b)

Current through $20 \mathrm{k} \Omega$ resistor,

$$
i_{R}=\frac{400}{20 \times 10^{3}}=0.02 \mathrm{~A}
$$

Current through inductor,

$$
\begin{aligned}
i_{L} & =\frac{V}{R_{1}}\left(1-e^{-R_{1} / L t}\right)=\frac{200}{40}\left(1-e^{-40 t}\right) \\
& =5\left(1-e^{-40 t}\right) \\
i_{A} & =i_{R}+i_{L} \\
& =0.02+5\left(1-e^{-40 t}\right)
\end{aligned}
$$

To turn on $i_{A} \geq$ latching current,

$$
\begin{aligned}
0.02+5\left(1-e^{-40 t}\right) & =60 \mathrm{~mA} \\
T & =200 \mu \mathrm{sec}
\end{aligned}
$$

2. (c)

Using relation,

$$
\begin{align*}
\cos \alpha-\cos (\alpha+\mu) & =\text { constant } \tag{1}\\
\alpha & =35^{\circ}, \quad \mu=4^{\circ} \\
K & =\cos 35^{\circ}-\cos \left(35+4^{\circ}\right)=0.042
\end{align*}
$$

At $\alpha=0^{\circ}$
Let,

$$
\begin{aligned}
\mu & =\mu_{0} \\
K & =\cos 0^{\circ}-\cos \left(0+\mu_{0}\right) \\
0.042 & =1-\cos \mu_{0} \\
\cos \mu_{0} & =0.958 \\
\mu_{0} & =16.66^{\circ}
\end{aligned}
$$

$$
\text { Inductive voltage regulation }=\frac{1-\cos \mu_{0}}{2}=0.0209
$$

3. (a)

4. (c)

Due to absence of minority carrier reverse recover time of schottky diode is in nanosecond. It is used in SMPS.
5. (a)

The source is a 'cosine' function. So capacitor charges to its maximum value instantaneously as switch is closed at $t=0$. So diode conducts for 0°.
6. (d)

$$
\begin{aligned}
\text { Average load current } & =\frac{12+16}{2}=14 \mathrm{~A} \\
\text { Average load voltage } & =V_{0}=I_{0} R=14 \times 10=140 \mathrm{~V} \\
V_{0} & =\alpha V_{s}
\end{aligned}
$$

Since the chopper is step down or type-A,

$$
\begin{aligned}
140 & =\alpha 200 \\
\alpha & =\frac{140}{200}=0.7 \\
\frac{T_{\text {on }}}{T_{\text {on }}+T_{\text {off }}} & =0.7 \\
0.3 T_{\text {on }} & =0.7 T_{\text {off }} \\
\frac{T_{\text {on }}}{T_{\text {off }}} & =2.33
\end{aligned}
$$

7. (a)

In 6 pulse thyristor, frequency components available on supply side current are
$f_{s},(6 K \pm 1) f_{s}$ where $K=1,2,3,4, \ldots$.
60, 300, 420, 660
Lowest frequency component is 60 .
8. (a)

$$
\begin{aligned}
& V_{s} \\
& V_{\text {or }} \\
& V_{0} V_{s} \sqrt{\frac{2 d}{\pi}} \omega t \\
& V_{0 \mathrm{rms}}=600 \sqrt{\frac{60^{\circ}}{180^{\circ}}}=346.4 \mathrm{~V}
\end{aligned}
$$

9. (a)

During the positive half cycle the circuit is,

$$
\begin{aligned}
i(t) & =\frac{V_{s}}{R}\left(1-e^{-t / \tau}\right)=\frac{240}{20}\left(1-e^{\frac{-0.01 \times 20}{0.1}}\right) \\
i_{(0.01)} & =10.37 \mathrm{~A}
\end{aligned}
$$

10. (d)

In the output phase voltage the even, third and multiples of $3^{\text {rd }}$ harmonics are absent. So, lowest order harmonics are $5^{\text {th }}$ harmonics,

$$
\text { Fourier series, } V_{R}=\sum_{n=6 k \pm 1} \frac{2 V_{s}}{n \pi} \sin n \omega t
$$

So, frequency of $5^{\text {th }}$ harmonis $=5 \times$ fundamental frequency $=5 \times 50=250 \mathrm{~Hz}$
11. (a)

The main thyristor is turned off when i_{c} is,

$$
\begin{aligned}
i_{c} & =I_{p} \sin \omega t=I_{0} \\
\omega t & =\sin ^{-1}\left(\frac{I_{0}}{I_{p}}\right)
\end{aligned}
$$

Peak value of current through capacitor,

$$
\begin{aligned}
& I_{p}=V_{s} \sqrt{\frac{C}{L}}=230 \times \sqrt{\frac{20 \times 10^{-6}}{5 \times 10^{-6}}}=460 \mathrm{~A} \\
& \omega t=\sin ^{-1}\left(\frac{300}{460}\right)=40.70^{\circ}
\end{aligned}
$$

Voltage across main thyristor $=V_{s} \cos \omega t$

$$
\begin{aligned}
& =230 \times \cos 40.70^{\circ} \\
& =174.37 \mathrm{~V}
\end{aligned}
$$

12. (b)

The power loss,

$$
\begin{aligned}
P & =\frac{1}{T} \int_{0}^{3} V_{s}(t) i_{s}(t) d t \\
& =\frac{1}{T} \int_{0}^{3}\left(\frac{200}{3} t\right)\left(\frac{600}{3} t\right) d t=\frac{40000}{3 T} \int_{0}^{3} t^{2} d t \\
P & =\frac{40000}{3 T}\left[\frac{t^{3}}{3}\right]_{0}^{3}
\end{aligned}
$$

Where T is in $\mu \mathrm{sec}$

$$
\begin{array}{ll}
\Rightarrow & T=\frac{1}{50} \times 10^{6}=20000 \\
\text { So, } & P=\frac{40000}{3 \times 20000}\left[\frac{3^{3}}{3}\right] \\
P=6 \text { Watt average power loss }
\end{array}
$$

13. (a)

Given,

$$
\begin{aligned}
\frac{V_{d c}}{2} & =96 \\
V_{d c} & =192 \mathrm{~V}
\end{aligned}
$$

Rms value of the fundamental voltage in the output,

$$
V_{01}=\frac{2 V_{s}}{\sqrt{2} \pi}=\frac{2 \times 192}{\sqrt{2} \pi}=86.43 \mathrm{~V}
$$

Fundamental power in the output,

$$
=\frac{\left(V_{01}\right)^{2}}{R}=\frac{(86.43)^{2}}{5}=1494 \mathrm{~W}
$$

14. (a)

Fourier expression of output voltage is,

$$
V_{0, n}=\sum_{n=1,3,5}^{\infty} \frac{2 V_{d c}}{n \pi} \sin n \omega t \mathrm{~V}
$$

Harmonic factor for $3^{\text {rd }}$ harmonic

$$
\begin{aligned}
\text { H.F. } & =\frac{V_{3, \mathrm{rms}}}{V_{1, \mathrm{rms}}} \\
\text { H.F. } & =\frac{V_{3, \mathrm{rms}}}{V_{1, \mathrm{rms}}}=\frac{\frac{2 \times 48}{\sqrt{2} \times 3 \pi}}{\frac{2 \times 48}{\sqrt{2} \pi}} \times 100 \\
& =\frac{1}{3} \times 100=33.33 \%
\end{aligned}
$$

15. (b)

During the on period of T_{1} and T_{2} the circuit behaves as

Where,

$$
\begin{aligned}
& V_{C}=\frac{1}{C} \int_{0}^{t_{\text {on }}} i d t \\
& V_{C}=\frac{30}{20 \times 10^{-6}} T_{o n}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\text {on }}=\frac{1}{2 f}=\frac{1}{2 \times 500}=1 \times 10^{-3} \mathrm{~s} \\
& V_{C}=\frac{30}{20 \times 10^{-6}} \times 1 \times 10^{-3}=1500 \mathrm{~V}
\end{aligned}
$$

Peak to peak of output voltage is 1500 V.
The reverse voltage that appears across thyristor is 750 V .
16. (a)

To eliminante the $5^{\text {th }}$ harmonic content,

$$
\begin{aligned}
2 d & =\frac{2 \pi}{5} \\
d & =\frac{\pi}{5}=36^{\circ}
\end{aligned}
$$

The $7^{\text {th }}$ harmonic rms value is,

$$
\begin{aligned}
V_{07(\mathrm{rms})} & =\frac{4 V_{S}}{7 \pi \sqrt{2}} \sin \frac{7 \pi}{2} \sin \left(7 \times 36^{\circ}\right) \\
& =0.122 V_{S}
\end{aligned}
$$

17. (b)

$$
\text { Average } \mathrm{ON} \text { state loss }=I_{\mathrm{rms}}^{2} R_{\mathrm{ON}}
$$

Where, $I_{\mathrm{rms}} \rightarrow$ rms value current, $R_{\mathrm{ON}} \rightarrow$ On state resistance of MOSFET

$$
i(t)=\frac{A}{T / 2} t=\frac{2 A}{T} t
$$

$$
i_{\mathrm{rms}}=\sqrt{\frac{1}{T} \int_{0}^{T / 2}[i(t)]^{2} d t}=\sqrt{\frac{1}{T} \int_{0}^{T / 2} \frac{4 A^{2}}{T^{2}} t^{2} d t}
$$

$$
=\sqrt{\frac{1}{T} \times \frac{4 A^{2}}{T^{2}}\left(\frac{t^{3}}{3}\right)_{0}^{T / 2}}=\sqrt{\frac{1}{T} \times \frac{4 A^{2}}{T^{2}} \times \frac{T^{3}}{8 \times 3}}=\frac{A}{\sqrt{6}}
$$

Average ON state loss $=\left(\frac{15}{\sqrt{6}}\right)^{2} \times 0.25=9.375 \mathrm{~W}$
18. (a)

Gate-cathode characteristic slope $=\frac{V_{g}}{I_{g}}$
Where,

$$
\begin{align*}
V_{g} & =\text { Allowable voltage across SCR } \\
I_{g} & =\text { Allowable current across } \mathrm{SCR} \\
\frac{V_{g}}{I_{g}} & =120 \\
V_{g} & =120 I_{g} \tag{i}
\end{align*}
$$

Allowable gate power dissipation $=0.4$ watt

$$
V_{g} I_{g}=0.4 \mathrm{Watt}
$$

Put value of ' V_{g} ' from equation (i)

$$
\left(120 I_{g}\right) I_{g}=0.4
$$

EE • Power Electronics

We know,

$$
\begin{aligned}
I_{g} & =\sqrt{\frac{0.4}{120}} A=0.0577 \mathrm{~A} \\
V_{g} & =120 \times 0.0577=6.92 \mathrm{~V} \\
V_{s} & =V_{g}+R_{s} I_{g} \\
20 & =6.928+0.0577 R_{s} \\
0.0577 R_{s} & =13.071 \\
R_{s} & =226.54 \Omega
\end{aligned}
$$

19. (c)

The diode will start conducting at an angle θ_{1}, where

$$
\theta_{1}=\sin ^{-1} \frac{E}{\left(V_{s}\right)_{\max }}=\sin ^{-1} \frac{120}{230 \times \sqrt{2}}=21.64^{\circ}
$$

Average value of charging current,

$$
\begin{aligned}
I_{0 \text { avg }} & =\frac{1}{2 \pi R}\left[2 V_{m} \cos \theta_{1}-E\left(\pi-2 \theta_{1}\right)\right] \\
& =\frac{1}{2 \pi \times 10}\left[2 \times 230 \times \sqrt{2} \times \cos 21.64^{\circ}-120\left(\pi-\frac{2 \times 21.64^{\circ} \times \pi}{180}\right)\right] \\
& =5.071 \mathrm{~A}
\end{aligned}
$$

Power delivered to battery

$$
=E I_{0 \text { avg }}=120 \times 5.071=608.82 \mathrm{~W}
$$

(Power delivered to battery) \times (Charging time in hours) $=$ Battery capacity
$(608.52) \times$ charging time $=8850 \mathrm{~Wh}$

$$
\text { Charging time }=\frac{8850}{608.52} \text { hours }=14.54 \text { hours }
$$

20. (d)

For 1- ϕ semiconverter,

$$
\text { Supply rms current, } I_{\mathrm{rms}}=I_{d c}\left[\frac{\pi-\alpha}{\pi}\right]^{1 / 2}=I_{d c}\left[\frac{\pi-\pi / 4}{\pi}\right]^{1 / 2}=0.866 I_{\mathrm{dc}}
$$

The rms value of the supply fundamental component of input current

$$
\begin{aligned}
I_{\mathrm{rms}, 1} & =\frac{2 \sqrt{2}}{\pi} I_{d c} \cos \left(\frac{\alpha}{2}\right) \\
& =\frac{2 \sqrt{2}}{\pi} I_{d c} \cos \left(\frac{\pi}{4 \times 2}\right)=0.83178 I_{d c} \\
\text { Harmonic factor }(H f) & =\left[\left(\frac{I_{\mathrm{rms}}}{I_{\mathrm{rms}, 1}}\right)^{2}-1\right]^{1 / 2}=\left[\left(\frac{0.866 I_{d c}}{0.83178 I_{d c}}\right)^{2}-1\right]^{1 / 2}=28.98 \%
\end{aligned}
$$

21. (c)

Case-I,

$$
\begin{aligned}
T_{j} & =110^{\circ} \mathrm{C}, \quad T_{s}=80^{\circ} \mathrm{C} \\
P_{a v 1} & =\frac{110-80}{0.16+0.05}=142.85 \mathrm{~W}
\end{aligned}
$$

Case-II,

$$
\begin{aligned}
T_{j} & =110^{\circ} \mathrm{C}, \quad T_{s}=50^{\circ} \mathrm{C} \\
P_{a v 2} & =\frac{110-50}{0.16+0.05}=285.71 \mathrm{~W}
\end{aligned}
$$

Thyristor rating is proportional to the square root of average power loss

$$
\% \text { increase in rating }=\frac{\sqrt{285.71}-\sqrt{142.85}}{\sqrt{142.85}} \times 100=41.42 \%
$$

22. (b)

For Buck-converter
Average output voltage $=D V_{s}$
Where,

$$
\begin{array}{rlrl}
D & =\text { Duty ratio, } & V_{s}=\text { input voltage } \\
V_{s} & =40 \mathrm{~V}, & V_{0}=16 \mathrm{~V} \\
f & =20 \mathrm{kHz} & \\
16 & =D \times 40 & \\
D & =\frac{16}{40}=0.4 & &
\end{array}
$$

Peak to peak ripple current,

$$
\begin{aligned}
\Delta I_{L} & =\frac{V_{s} D(1-D)}{L f} \\
0.8 & =\frac{40 \times 0.4 \times 0.6}{L \times 20 \times 10^{3}} \\
L & =600 \mu \mathrm{H}
\end{aligned}
$$

23. (b)

$$
V_{s}=250 \mathrm{~V}, \quad V_{0}=625 \mathrm{~V}
$$

For boost converter,

$$
\begin{aligned}
V_{0} & =\frac{V_{s}}{1-D} \\
625 & =\frac{250}{1-D} \\
\Rightarrow \quad D & =0.6 \\
I_{L \text { min }} & =I_{L}-\frac{\Delta I_{L}}{2}=\frac{3125}{250}-\frac{250 \times 0.6}{2 \times 10 \times 10^{-3} \times 25 \times 10^{3}} \\
& =12.2 \mathrm{~A}>0
\end{aligned}
$$

It is operating in continuous conduction,

$$
\text { Now } \begin{aligned}
I_{0} & =\frac{3125}{625}=5 \mathrm{~A} \\
\frac{V_{0}}{V_{s}} & =\frac{I_{s}}{I_{0}}=\frac{1}{1-D} \\
\Rightarrow \quad I_{s} & =\frac{I_{0}}{1-D}=\frac{5}{1-0.6}=12.5 \mathrm{~A} \\
R_{\mathrm{in}} & =\frac{V_{s}}{I_{s}}=\frac{250}{12.5}=20 \Omega
\end{aligned}
$$

24. (d)

$$
\begin{aligned}
\text { Output voltage }\left(V_{0}\right) & =36 \mathrm{~V} \\
\text { Input voltage }\left(V_{s}\right) & =24 \mathrm{~V}
\end{aligned}
$$

For Buck-boost converter

$$
\begin{aligned}
V_{0} & =\frac{D V_{s}}{1-D} \\
36 & =\frac{24 D}{1-D} \\
\Rightarrow \quad 36-36 D & =24 D \\
60 D & =36 \\
D & =0.6 \\
\Rightarrow I_{L} & =\frac{D V_{s}}{L f}
\end{aligned}
$$

At the boundary,

$$
\begin{aligned}
I_{L \text { avg }}-\frac{\Delta I_{L}}{2} & =0 \\
\frac{I_{0}}{1-D} & =\frac{\Delta I_{L}}{2} \\
\frac{144 / 36}{1-0.6} & =\frac{0.6 \times 24}{2 \times 20 \times 10^{3} \times L} \\
L & =\frac{0.4}{4} \times \frac{0.6 \times 24}{2 \times 20 \times 10^{3}}=36 \mu \mathrm{H}
\end{aligned}
$$

25. (d)

For ON period:

$$
\begin{aligned}
& V_{L 1}=\left(V_{d c}-V_{c 1}\right) \\
& V_{L 2}=\left(V_{0}-V_{c 1}\right)
\end{aligned}
$$

For OFF-period

Now, for inductor ' L_{1} '

$$
\begin{aligned}
\left(V_{L}\right)_{\mathrm{avg}} & =0 \\
\left(V_{d c}-V_{C 1}\right) D T-V_{C 1}(1-D) T & =0 \\
V_{C 1} & =D V_{d c}
\end{aligned}
$$

Similarly for inductor ' L_{2} '

$$
\begin{aligned}
\left(V_{C 1}-V_{0}\right) D T-V_{0}(1-D) T & =0 \\
V_{0} & =D V_{c 1}=D^{2} V_{d c} \\
V_{0} & =D^{2} V_{d c}=(0.75)^{2} \times 80 \mathrm{~V}=45 \mathrm{~V}
\end{aligned}
$$

So,
26. (b)

$$
\begin{aligned}
& P_{\mathrm{avg}}=I_{\mathrm{rms}}^{2} \cdot R_{\mathrm{ON}} \\
& R_{\mathrm{ON}}=0.15 \Omega \text { and } I_{\mathrm{rms}}=\sqrt{\frac{1}{2 \pi} \int_{0}^{\pi} 10 t d t}=\frac{10}{\sqrt{6}} \\
& P_{\mathrm{avg}}=\frac{100}{6} \times 0.15=2.50 \mathrm{~W}
\end{aligned}
$$

27. (a)

For 1- ϕ full bridge inverter

$$
\begin{aligned}
& V_{d c}=60 \mathrm{~V}, \\
& V_{01 \mathrm{rms}}=\frac{2 \sqrt{2} V_{d c}}{\pi}=\frac{2 \sqrt{2}}{\pi} \times 60=54.046 \mathrm{~V} \\
& \text { Power }=\frac{V_{01 \mathrm{rms}}^{2}}{R}=\frac{(54.046)^{2}}{12}=243.41 \mathrm{~W}
\end{aligned}
$$

28. (d)

Pole voltage, phase voltage,

$$
\begin{aligned}
V_{\text {pole }} & =V_{R} \rightarrow \text { quasi square wave } 2 d=\frac{2 \pi}{3} \mathrm{rad} \\
n & =6 K \pm 1=1,5,7,11,13 \ldots .
\end{aligned}
$$

Line voltage $\rightarrow 6$ step :

$$
n=6 K \pm 1=1,5,7,11,13 \ldots .
$$

29. (b)

Average output voltage of the converter,

$$
V_{0}=\frac{3 V_{m L}}{\pi} \cos \alpha
$$

Load current,

$$
\begin{aligned}
I_{0} & =20 \mathrm{~A} \\
E_{b} & =180 \mathrm{~V} \\
R_{a} & =1 \Omega
\end{aligned}
$$

Back emf,

Applying KVL,

$$
\begin{aligned}
V_{0}-1 \times I_{0}-180 & =0 \\
V_{0} & =180+1 \times 20=200 \mathrm{~V}
\end{aligned}
$$

Now,

$$
\frac{3 V_{m L}}{\pi} \cos \alpha=200
$$

$$
\begin{aligned}
\frac{3 \times 400 \times \sqrt{2}}{3.14} \times \cos \alpha & =200 \\
\cos \alpha & =0.37 \\
\alpha & =68.28^{\circ}
\end{aligned}
$$

30. (d)

$$
\begin{aligned}
& V_{i}=200 \sqrt{2} \sin (120 \pi t) \mathrm{V} \\
& i_{i}=\left(20 \sqrt{2} \sin \left(120 \pi t-\frac{\pi}{3}\right)+10 \sqrt{2} \sin \left(360 \pi t+\frac{\pi}{4}\right)\right)+4 \sqrt{2} \sin \left(840 \pi t-\frac{\pi}{6}\right) \mathrm{A}
\end{aligned}
$$

Fundamental component of input voltage,

$$
\begin{aligned}
\left(V_{i}\right)_{1} & =200 \sqrt{2} \sin (120 \pi t) \mathrm{V} \\
\left(V_{i}\right)_{\mathrm{rms}} & =200 \mathrm{~V}
\end{aligned}
$$

Fundamental component of current,

$$
\left(i_{L}\right)_{1, \mathrm{rms}}=\frac{20 \sqrt{2}}{\sqrt{2}}=20
$$

Phase difference between the two components

$$
\phi_{1}=\frac{\pi}{3}
$$

Active power due to fundamental component

$$
\begin{aligned}
& P_{1}=\left(V_{i}\right)_{1 \mathrm{rms}} \times\left(i_{i}\right)_{1 \mathrm{rms}} \cos \phi_{1} \\
& P_{1}=200 \times 20 \times \cos \left(\frac{\pi}{3}\right)=2000 \mathrm{~W}
\end{aligned}
$$

rms value of input voltage $=200 \mathrm{~V}$

$$
\begin{aligned}
\text { rms value of current } & =\sqrt{\left(\frac{20 \sqrt{2}}{\sqrt{2}}\right)^{2}+\left(\frac{10 \sqrt{2}}{\sqrt{2}}\right)^{2}+\left(\frac{4 \sqrt{2}}{\sqrt{2}}\right)^{2}}=\sqrt{400+100+16}=\sqrt{516} \\
& =22.71 \mathrm{~A}
\end{aligned}
$$

Let input power factor $\cos \phi$

$$
\begin{aligned}
200 \times 22.71 \times \cos \phi & =2000 \\
\cos \phi & =\frac{10}{22.71}=0.44
\end{aligned}
$$

