

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

ENGINEERING MECHANICS

CIVIL ENGINEERING

Date of Test: 01/04/2024

ANSWER KEY ➤

(c)	6.	(c)	11.	(d)	16.	(d)	21.	(a)
(d)	7.	(d)	12.	(a)	17.	(c)	22.	(a)
(c)	8.	(c)	13.	(d)	18.	(a)	23.	(b)
(a)	9.	(c)	14.	(c)	19.	(b)	24.	(b)
(c)	10.	(c)	15.	(c)	20.	(b)	25.	(d)
	(d) (c) (a)	(d) 7. (c) 8. (a) 9.	(d) 7. (d) (c) 8. (c) (a) 9. (c)	(d) 7. (d) 12. (c) 8. (c) 13. (a) 9. (c) 14.	(d) 7. (d) 12. (a) (c) 8. (c) 13. (d) (a) 9. (c) 14. (c)	(d) 7. (d) 12. (a) 17. (c) 8. (c) 13. (d) 18. (a) 9. (c) 14. (c) 19.	(d) 7. (d) 12. (a) 17. (c) (c) 8. (c) 13. (d) 18. (a) (a) 9. (c) 14. (c) 19. (b)	(d) 7. (d) 12. (a) 17. (c) 22. (c) 8. (c) 13. (d) 18. (a) 23. (a) 9. (c) 14. (c) 19. (b) 24.

DETAILED EXPLANATIONS

1. (c)

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega_0 = 0$$

$$\theta = \frac{1}{2} \times 2 \times 10^2 = 100 \text{ rad}$$

 $\therefore \qquad \text{Number of revolutions} = \frac{100}{2\pi} = 15.92$

2. (d)

Acceleration (a) =
$$\frac{dv}{dt}$$
 = $3t^2 - 2t$
at $t = 3$ sec.
 $a = 3 \times 3 \times 3 - 2 \times 3 = 21$ m/s²

3. (c)

The velocity of block embedded with bullet

$$v = \frac{401 \times 0.01}{4 + 0.01} = 1 \text{ m/s}$$

Kinetic energy loss = $kE_i - kE_f$

$$= \frac{1}{2} \times 0.01 \times 401^2 - \frac{1}{2} \times 4.01 \times 1^2$$
$$= 802 \text{ N} - \text{m}$$

4. (a)

Considering equilibrium of forces in N-S direction

$$\left(\frac{P}{\sqrt{2}}\right) + \left(\frac{P}{\sqrt{2}}\right) - F = 0$$

$$F = \frac{2P}{\sqrt{2}} = \sqrt{2}P$$

5. (c)

$$M_{\rm o} = 120 \sin 26^{\circ} \times 2.8 \text{ (ACW)} - 29 \text{ (CW)}$$

= 118.2927 kNm (ACW)

6. (c)

$$\Sigma H = 25 - 20 = 5 \text{ kN } (\rightarrow)$$

 $\Sigma V = 50 + 35 = 85 \text{ kN } (\downarrow)$

$$\therefore \qquad \text{Resultant force} = \sqrt{(\Sigma H)^2 + (\Sigma V)^2}$$
$$= \sqrt{5^2 + 85^2}$$
$$= 85.147 \text{ kN}$$

7. (d)

For perfectly elastic spheres e = 1 Using momentum equation.

$$m\vec{v}_2 + m\vec{v}_1 = 2m\vec{u} + m\vec{u} = 3m\vec{u}$$

$$\vec{v}_2 - \vec{v}_1 = 3\vec{u}$$

Using Newton's Law of collision of elastic bodies

$$\vec{v}_2 - \vec{v}_1 = e(2\vec{u} - \vec{u})\vec{u} \tag{$: e = 1)}$$

Solving

$$\vec{v}_2 = 2\vec{u}$$

$$\vec{v}_1 = \vec{u}$$

8. (c)

$$\omega = 12 + 9t - 3t^2$$

$$\frac{d\omega}{dt} = 9 - 6t = 0$$

 \Rightarrow t = 1.5s

$$\frac{d^2\omega}{dt^2} = -6 < 0$$

Hence, at t = 1.5 sec maximum value of angular velocity will occur

$$\omega_{\text{max}} = 12 + 9 \times 1.5 - 3 \times 1.5^{2}$$
$$= 12 + 13.5 - 6.75$$
$$= 18.75 \text{ rad/s}$$

9. (c)

Let the shortest distance between ships will occur at time thereafter the ship A passes point O.

The distance of ship A from O = 20 t

The distance of ship B from O = 20 (2 - t)

The distance between ships

$$D = \sqrt{(20t)^2 + \left\{20(2-t)\right\}^2}$$

For shortest distance

$$\frac{dD}{dt} = 0 \text{ or } \frac{d(D^2)}{dt} = 0$$

$$2 \times 20t - 20(2 - t) \times 2 = 0$$

$$t = 1 \text{ hrs}$$

Shortest distance = $20\sqrt{2}$ km

10. (c)

$$5g(2.1) = \frac{1}{2} \times 5 \times V^2 + \frac{1}{2} k \delta^2$$

$$\Rightarrow 10.5g = 2.5V^2 + \frac{1}{2} \times 10000 \times (0.1)^2$$

$$\Rightarrow 10.5 \times 9.81 = 2.5 V^2 + 50$$

$$\Rightarrow V^2 = 21.202$$

$$\therefore V = 4.6 \text{ m/s}$$
[: $k = 10000 \text{ N/m}$]

11. (d)

Considering both bars together as a free body, we see that they are in equilibrium under the action of three parallel forces i.e. weights W and 2W and the vertical reaction exerted by the string AD.

For equilibrium condition,

$$\sum M_{\Delta} = 0$$

$$\Rightarrow \qquad 2W \times AE - W \times AF = 0$$

$$\therefore AF = 2AE \qquad ...(i)$$

Now, from the geometry of the system,

$$AF = \frac{L}{2}\cos(60^{\circ} - \alpha) \qquad ...(ii)$$

and

$$AE = (L\cos\alpha - L\cos(60^{\circ} - \alpha)) \qquad ...(iii)$$

From equations (i), (ii) and (iii), we get

$$\frac{L}{2}\cos(60^{\circ} - \alpha) = 2(L\cos\alpha - L\cos(60^{\circ} - \alpha))$$

$$\tan\alpha = \frac{\sqrt{3}}{5}$$

$$\alpha = 19.11^{\circ}$$

12. (a)

Since no external torque has acted, angular momentum will be conserved.

Applying conservation of angular momentum,

$$I\omega = I'\omega'$$

$$MR^2 \times \omega = (MR^2 + 2mR^2)\omega'$$

$$5 \times (0.2)^2 \times 10 = [5 \times (0.2)^2 + 2 \times 0.5 \times (0.2)^2]\omega'$$

$$\omega' = 8.333 \text{ rad s}^{-1}$$

13. (d)

$$I = -2\hat{i} - \hat{j} + \hat{k}$$
$$r = 2\hat{i} - 3\hat{j} + \hat{k}$$

Angular momentum = $H = r \times I$

$$= (2\hat{i} - 3\hat{j} + \hat{k}) \times (-2\hat{i} - \hat{j} + \hat{k}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 2 \\ -2 & -1 & 1 \end{vmatrix}$$

$$= \hat{i}(-3+2) - \hat{j}(2+4) + \hat{k}(-2-6)$$

$$= \hat{i}(-1) - 6\hat{j} - 8\hat{k} = -\hat{i} - 6\hat{j} - 8\hat{k}$$

$$|H| = \sqrt{1^2 + 6^2 + 8^2} = 10.01 \text{ kg m}^2/\text{s} \simeq 10 \text{ kg m}^2/\text{s}$$

$$T\sin\theta + R_y = mg$$
$$T\cos\theta = R_x$$

$$T\cos\theta = R$$

Now,

$$tan\theta = \frac{125}{275}$$

$$\theta = 24.44^{\circ}$$

Taking moments about A,

$$l \times T \sin\theta = l \times mg$$

$$T = \frac{35 \times 9.81}{\sin 24.44^{\circ}} = 829.87 \,\text{N}$$

www.madeeasy.in

15. (c)

16. (d)

17. (c)

18. (a)

Free body diagram of ladder is

Using equilibrium equations.

$$R_{A} = P$$

$$R_A = P$$
 and
$$R_B = W$$

Taking moment about *B*.

$$R_A \cdot l \cos \theta = W \cdot \frac{l}{2} \sin \theta$$

$$RA = \frac{1}{2}W \tan \theta = P$$

19. (b)

$$\Sigma F_{y} = 0$$

$$W = R_{S} \cos \theta$$

$$R_{S} = \frac{100 \times 10}{\sqrt{75}}$$

$$\cos \theta = \frac{\sqrt{75}}{10}$$

$$\sin \theta = \frac{5}{10}$$

$$\Sigma F_{X} = 0$$

$$\Sigma F_{\chi} = 0$$

$$R_{S} \sin \theta = R_{A}$$

$$\therefore R_{A} = \frac{1000}{\sqrt{75}} \times \frac{5}{10} = 57.735 \,\text{N}$$

20. (b)

$$F_N = (m_A + m_C)g$$
$$F = T = m_B g$$

To prevent horizontal sliding

$$F = \mu F_{N}$$

$$\mu(m_{A} + m_{C})g = m_{B}g$$

$$0.2(4.4 + m_{C}) = 2.6$$

$$\Rightarrow m_{C} = 8.6 \text{ kg}$$

21. (a)

CE

Now,
$$\overline{x} = \frac{\sum a\overline{x}}{\sum a}$$

$$\Rightarrow \qquad \overline{x} = \frac{1216000 - 5026.55\overline{x}}{11773.45}$$

$$\Rightarrow \qquad \overline{x} = 72.38 \,\text{mm}$$

22. (a)

x-component of the resultant = $5 \cos 37^{\circ} + 3 \cos 0^{\circ} + 2 \cos 90^{\circ} = 3.99 + 3 + 0 = 6.99$ y-component of the resultant = $5 \sin 37^{\circ} + 3 \sin 0^{\circ} + 2 \sin 90^{\circ}$ = 3.01 + 2 = 5.01

Magnitude of resultant vector = $\sqrt{6.99^2 + 5.01^2}$ = 8.6

23. (b)

Mass of the block is m, therefore, stretch in the spring (x) is given by,

$$mg = kx$$

$$\Rightarrow \qquad \qquad x = \frac{mg}{k}$$

Total mechanical energy of the system just after the blow is,

$$T_{i} = \frac{1}{2}mv^{2} + \frac{1}{2}kx^{2}$$

$$\Rightarrow \qquad T_{i} = \frac{1}{2}mv^{2} + \frac{1}{2}k\left(\frac{mg}{k}\right)^{2}$$

$$\Rightarrow \qquad T_{i} = \frac{1}{2}mv^{2} + \frac{m^{2}g^{2}}{2k}$$

If the block descends through a height 'h' before coming to an instantaneous rest then the elastic potential

energy becomes $\frac{1}{2}k\left(\frac{mg}{k}+h\right)^2$ and the gravitational potential energy will be -mgh.

$$T_f = \frac{1}{2}k\left(\frac{mg}{k} + h\right)^2 - mgh$$

On applying conservation of energy, we get

$$T_{i} = T_{f}$$

$$\Rightarrow \frac{1}{2}mv^{2} + \frac{m^{2}g^{2}}{2k} = \frac{1}{2}k\left(\frac{mg}{k} + h\right)^{2} - mgh$$

$$\Rightarrow \frac{1}{2}mv^{2} = \frac{1}{2}kh^{2}$$

$$\Rightarrow h = v\sqrt{\frac{m}{k}}$$

24. (b)

Let the cross-sectional area be α . The mass of an element (dm) of length dx located at a distance x away from the left end is $(0.5 + 3x)\alpha dx$. The x-coordinate of the centre of mass is given by,

$$X_{cm} = \frac{\int x dm}{\int dm} = \frac{\int_{0}^{5} x(0.5 + 3x)\alpha dx}{\int_{0}^{5} (0.5 + 3x)\alpha dx}$$

$$= \frac{\int_{0}^{5} (0.5x + 3x^{2})\alpha dx}{\int_{0}^{5} (0.5x + 3x)\alpha dx} = \frac{0.5(\frac{5^{2}}{2}) + 3(\frac{5^{3}}{3})}{0.5 \times 5 + 3(\frac{5^{2}}{2})}$$

$$= \frac{6.25 + 125}{2.5 + 37.5} \approx 3.28 \text{ m}$$

25. (d)

Tangential force, $F_T = mg \sin 30^\circ = 0.5 mg$

Normal force,
$$F_n = T - mg \cos 30^\circ$$

 $F_n = 2 mg - 0.866 mg$
 $F_n = 1.134 mg$

$$F = 2 ma - 0.866 ma$$

$$F_{n} = 1.134 \, \text{mg}$$

Normal acceleration, $a_n = \frac{F_n}{m}$

$$\Rightarrow \qquad \qquad a_n = \frac{1.134 \, mg}{m}$$

$$\Rightarrow \qquad \qquad a_n = 1.134 \times 9.81 = 11.125 \text{ m/s}^2$$

$$\therefore \qquad \qquad a_n = \frac{V^2}{R}$$

$$a_n = \frac{V^2}{R}$$

$$\Rightarrow 11.125 = \frac{V^2}{1}$$

$$\Rightarrow$$
 $V = 3.34 \,\mathrm{m/s}$